如何创建自动车辆路径模拟?

时间:2015-03-31 21:33:20

标签: python optimization routing

我想创建一个车辆路径优化程序。通过找到从A到B的最短路径,我将有多辆车行驶和交付物品。首先,我将简单地输出结果。我稍后可能会创建该程序的直观表示。

有人向我建议,我会发现在Python中最容易做到这一点。

我必须完成这项任务,但这看起来非常令人生畏。我不是最好的程序员,但也不是初学者,我擅长数学和快速学习。

关于如何分解这项任务的任何建议都会非常有帮助。 我应该使用Python吗? 任何特别适合此任务的Python模块?

2 个答案:

答案 0 :(得分:0)

来自http://en.wikipedia.org/wiki/A*_search_algorithm

的A *算法的Psuedo代码
function A*(start,goal)
closedset := the empty set    // The set of nodes already evaluated.
openset := {start}    // The set of tentative nodes to be evaluated, initially containing the start node
came_from := the empty map    // The map of navigated nodes.

g_score[start] := 0    // Cost from start along best known path.
// Estimated total cost from start to goal through y.
f_score[start] := g_score[start] + heuristic_cost_estimate(start, goal)

while openset is not empty
    current := the node in openset having the lowest f_score[] value
    if current = goal
        return reconstruct_path(came_from, goal)

    remove current from openset
    add current to closedset
    for each neighbor in neighbor_nodes(current)
        if neighbor in closedset
            continue
        tentative_g_score := g_score[current] + dist_between(current,neighbor)

        if neighbor not in openset or tentative_g_score < g_score[neighbor] 
            came_from[neighbor] := current
            g_score[neighbor] := tentative_g_score
            f_score[neighbor] := g_score[neighbor] + heuristic_cost_estimate(neighbor, goal)
            if neighbor not in openset
                add neighbor to openset

return failure

function reconstruct_path(came_from,current)
    total_path := [current]
    while current in came_from:
        current := came_from[current]
        total_path.append(current)
    return total_path

这是找到最短路径的最常见和最实用的方法。它基本上扫描周围区域,直到满足起点和检查点,并在任何障碍处停止

并且取决于 hefty 你的程序如何是python并不是最好的,因为与其他语言相比,它的执行速度较慢。如果你寻找简单的python是你最好的朋友。

答案 1 :(得分:0)

前几天我使用了networkx,它非常棒。非常容易使用,而且非常快。

因此,您需要将数据转换为某种可用格式,然后通过此算法运行算法。

Python通常是脚本编写和整合数据并进行分析的不错选择!