数据系列,我如何在R中拟合分布?

时间:2015-03-31 17:36:25

标签: r zero data-fitting

我对数据系列有一些问题,因为它有一些零值,所以有一些发行版不适合它。我尝试使用函数fitdistfitdistr但没有人工作。有我的数据:

 Precp
28
8
0
107
339
231
308
226
302
333
163
92
48
17
101
327
424
338
559
184
238
371
413
261
12
24
103
137
300
446
94
313
402
245
147
70
8
5
59
109,2
493,6
374,5
399,3
330,5
183,8
341,1
91
127,5
15
69
165,8
337,9
255
309,3
352,7
437,5
420,4
295,6
141,7
3,4
16,2
58,9
55,5
203,1
235
300
264,5
320,5
401,5
500,2
149
100
12
110
53,5
70
661,5
86
499,6
154,5
367
142
177
435
64
287,3
210,3
324,7
288,8
0
0
0
0
0
0
0
76,2
53
59,6
176,5
263,1
285,3
423,9
387
367,9
243,9
94
38
50
31
177
180
264
326
204
463,4
255,6
336,4
436,8
139
5
98
180
275,8
415,2
351,7
369
324
249
296
267
102
4
51
123
358,2
394
470
260
288
502
322
597
216
18,9
26
98
311,5
237,5
278
296
387,5
274,2
458,1
0
0
99,6
69,3
152,7
189
319,8
217,9
280,2
250,1
275,2
275
117,5
0

当我尝试拟合分布时,例如Weibull,这是显示的消息:

> fw=fitdist(Precp,"weibull")
[1] "Error in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data,  : \n  non-finite value supplied by optim\n"
attr(,"class")
[1] "try-error"
attr(,"condition")
<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data,     ddistnam = ddistname, hessian = TRUE, method = meth, lower = lower,     upper = upper, ...): non-finite value supplied by optim>
Error in fitdist(Precp, "weibull") : 
  the function mle failed to estimate the parameters, 
                with the error code 100

当我尝试使用伽玛分布时会发生同样的事情。知道那里发生了什么吗?

1 个答案:

答案 0 :(得分:1)

如果您想要适合极值分布,例如Weibull分布,您可以尝试evd包:

library(evd)
> fit <- fgev(dat$Precp)
> fit

Call: fgev(x = dat$Precp) 
Deviance: 2159.363 

Estimates
     loc     scale     shape  
151.9567  137.6544   -0.1518  

Standard Errors
     loc     scale     shape  
12.41071   9.24535   0.07124  

Optimization Information
  Convergence: successful 
  Function Evaluations: 27 
  Gradient Evaluations: 15 

如果您对参数分布不感兴趣,可以考虑计算核密度的density函数。

由于您的数据似乎包含许多小值,因此您可以考虑混合两个分布。 flexmix包可以为您做到这一点。

hist(dat$Precp,prob=T,col="gray", ylim=c(0,0.0042), breaks=seq(0,700, by=50)
    xlab="", ylab="", main="")
legend("topright", 
    legend=c("density", "fgev", "flexmix"), 
    fill=c("darkgreen", "blue", "darkred")
)
xval <- seq(from=0, to=max(dat$Precp), length.out=200)

# density
fit1 <- density(dat$Precp)
lines(fit1, col="darkgreen", lwd=2)

# generalized extreme value distribution
fit2 <- fgev(dat$Precp)
param2 <- fit2$estimate
loc <- param2[["loc"]]
scal <- param2[["scale"]]
shape <- param2[["shape"]]
lines(xval, dgev(xval, loc=loc, scale=scal, shape=shape), col="blue", lwd=2)

# mixture of two Gamma distributions
# http://r.789695.n4.nabble.com/Gamma-mixture-models-with-flexmix-tt3328929.html#none
fit3 <- flexmix(Precp~1, data=subset(dat, Precp>0), k=2, 
    model = list(FLXMRglm(family = "Gamma"), FLXMRglm(family = "Gamma"))
)
param3 <- parameters(fit3)[[1]] # don't know why this is a list
interc <- param3[1,]
shape <- param3[2,]
lambda <- prior(fit3)
yval <- lambda[[1]]*dgamma(xval, shape=shape[[1]], rate=interc[[1]]*shape[[1]]) + 
        lambda[[2]]*dgamma(xval, shape=shape[[2]], rate=interc[[2]]*shape[[2]])
lines(xval, yval, col="darkred", lwd=2)

device output