2d中粒子相互作用的C代码

时间:2015-03-23 17:15:27

标签: c optimization

想象一下,在2D笛卡尔平面的每个坐标中都有一个粒子。每个粒子发射的物质在所有方向上都是分散的,基于贝塞尔函数的距离衰减,其他粒子各自吸收这种物质。因此,与给定颗粒相同距离的所有颗粒对该颗粒具有相同的影响。

之类的东西

grid

我正在使用此代码计算此类互动:

编辑:31/03:两者的完整代码。

 #include <stdio.h>  // para as rotinas de entrada e saída
 #include <stdlib.h> //
 #include <stdarg.h> // para importar os elementos da linha de comando
 #include <math.h>
 #include <string.h>
 #include <ctype.h>
 #include <malloc.h>
 #include <time.h>

 #include"ran1.c"
 #include"bessel.c"
 #define tmax 90000
 #define N 50
 #define beta 0.001
 #define sigma 0.001
 #define pi acos(-1.0)
 #define trans 50000
 #define epsilon 0.1



 void condicoes_iniciais(double **xold,double **yold,double **a)
 {
   int l,j;

   long idum=-120534;
   for(l=0;l<= N; l++)
     {
       for(j=0;j<= N; j++)
        {
          a[l][j]=5.0; 
        }
     }

   for(l=0;l<= N; l++)
     {
      for(j=0;j<= N; j++)
       {
         while(a[l][j]>4.4)
         a[l][j]=4.1+ran1(& idum);
       }
     }

   for(l=0;l<= N; l++)
    {
     for(j=0;j<= N; j++)
      {
       xold[l][j]=0.1*ran1(& idum);
      }
    }
   for(l=0;l<= N; l++)
    {
     for(j=0;j<= N; j++)
      {
       yold[l][j]=0.1*ran1(& idum);
      }
    }
 }


 void Matriz_Bessel(double **Bess,double gama)
 {
   int x,y;
   double r;
    for(x=0;x<=N;x++)
     {
      for(y=0;y<=N;y++)
       {
        if(y!=0 || x!=0)
        {
         r = gama*sqrt(x*x +y*y);
         Bess[x][y] = bessk0(r);
        }
       }
     }
 }

 void acoplamento(int x, int y,double **xold, double *Acopl,double **Bess)
 {
   int j, i, h, k,xdist, ydist;
   int Nmeio = N/2;
   double Xf;
   Xf = 0;

   for(i=0;i<=N;i++)
    {
     for(j=0;j<=N;j++)
      {
       h = x+i;
       k = y+j;
       ydist = j;
       xdist = i;

       if(i>Nmeio)
        {
         h = x +i;
         xdist = (N+1) -h +x;
        }
       if(h>N)
        {
         h=h-(N+1);
         xdist = x-h;
         if(xdist >Nmeio){xdist = i;
        }
       }

       if(j>Nmeio)
        {
         k = y +j;
         ydist = (N+1) -k +y;
        }

       if(k>N)
        {
         k=k-(N+1);
         ydist = y-k;
         if(ydist >Nmeio){ydist = j;
        }
       }

       if(ydist!=0 || xdist!=0)
        {
         Xf = Xf +Bess[xdist][ydist]*xold[h][k];
        }
     }
    }
   *Acopl = Xf;
 }

 void constante(double *c, double gama, double **Bess){
   double soma;
   int x, y;
   soma = 0;

   for(x=0;x<=(N/2);x++)
    {
     for(y=0;y<=(N/2);y++)
      {
       if(y!=0 || x!=0)
        {
         soma = soma +Bess[x][y];
        }
      }
    }
   *c = (1/(4*soma));
 }


 int main(int argc, char* argv[])
 {
   double **xold, **xnew, **yold, **ynew, **a;
   double gama, C;
   int x,y;
   int t,i;
   double  Mn, acopl;
   char arqnome[100];
   FILE *fout;
   double **Bess;
   Bess= (double**)malloc(sizeof(double*)*(N+3));
   for(i=0; i<(N+3); i++){Bess[i] = (double*)malloc(sizeof(double)*   (N+3));}
   xold= (double**)malloc(sizeof(double*)*(N+3));
   for(i=0; i<(N+3); i++){xold[i] = (double*)malloc(sizeof(double)*  (N+3));}
   yold= (double**)malloc(sizeof(double*)*(N+3));
   for(i=0; i<(N+3); i++){yold[i] = (double*)malloc(sizeof(double)*(N+3));}
   xnew= (double**)malloc(sizeof(double*)*(N+3));
   for(i=0; i<(N+3); i++){xnew[i] = (double*)malloc(sizeof(double)*(N+3));}
   ynew= (double**)malloc(sizeof(double*)*(N+3));
   for(i=0; i<(N+3); i++){ynew[i] = (double*)malloc(sizeof(double)*(N+3));}
   a= (double**)malloc(sizeof(double*)*(N+3));
    for(i=0; i<(N+3); i++){a[i] = (double*)malloc(sizeof(double)*(N+3));}

   srand (time(NULL));

   gama = 0.005;
   sprintf(arqnome,"serie_%.3f_%.3f.dat",gama,epsilon);
   fout = fopen(arqnome,"w");


   Matriz_Bessel(Bess,gama);
   condicoes_iniciais(xold,yold,a);

   a[0][0] = 4.1;
   a[N/2][N/2] = 4.3;


   constante(&C, gama,Bess);
     for(t=0;t<=tmax;t++)
     {
       Mn = 0;
       for(x=0;x<=N;x++)
          {
            for(y=0;y<=N;y++)
             {
               acoplamento(x,y,xold,&acopl,Bess);
               xnew[x][y] = (a[x][y]/(1+xold[x][y]*xold[x][y])) +yold[x][y] + epsilon*C*acopl;
               ynew[x][y] = yold[x][y] - sigma*xold[x][y] - beta;
               Mn = Mn + xnew[x][y];
               xold[x][y] = xnew[x][y];
               yold[x][y] = ynew[x][y];
              }
         } 
        if(t>trans){fprintf(fout,"%d %f %f %f %f %f\n",(t-trans),xold[0][0],yold[0][0],xold[N/2][N/2],yold[N/2][N/2],Mn/((N+1)*(N+1)));}
     }
   return 0;
 }

Bess[N][N]是每个半径的贝塞尔函数,使用数值公式计算。该计划大约需要1小时才能完成。

随着弗朗西斯的消化,我有

 #include <fftw3.h>
 #include <stdio.h>
 #include <math.h>
 #include <stdlib.h>
 #include <string.h>

 #include"bessel.c"
 #include"ran1.c"
 #define tmax 90000
 #define beta 0.001
 #define N 50
 #define sigma 0.001
 #define pi acos(-1.0)
 #define trans 50000
 #define epsilon 0.1


 void condicoes_iniciais(double *xold,double *yold,double *a)
 {
   int l;
   long idum=-120534;
   for(l=0;l<= N*N; l++){
       a[l]=5.0;}

   for(l=0;l<= N*N; l++){
       while(a[l]>4.4)
         a[l]=4.1+ran1(& idum);}

   for(l=0;l<=N* N; l++){
       xold[l]=0.1*ran1(& idum);
       yold[l]=0.1*ran1(& idum);}
   a[0]=4.1;
   a[N]=4.4;
 }


 void Matriz_Bessel(double *bessel,double gama)
 {

   int x,y,i,j;
   double dist;
   for(x=0,i=-N/2;x<N;x++,i++)
    {
      for(y=0,j=-N/2;y<N;y++,j++)
       {
         double dist=sqrt(i*i+j*j);
          if(dist>0){
            bessel[x*N+y]=bessk0(gama*dist);
            }
       else{
         bessel[x*N+y]=1;
         }
       }
    }
  }


  void constante(double *c, double *bessel)
  {
   int x;
   int y;
   double soma = 0;
   for(x=0;x<N;x++){
     for(y=0;y<N;y++){
       soma = soma + bessel[x*N+y];
     }}
   *c =(1/(4*soma));
 }

 int main(int argc, char* argv[]){

   double *xnew=fftw_malloc(sizeof(double)*N*N);
   double *acopl=fftw_malloc(sizeof(double)*N*N);
   double *xold=malloc(sizeof(double)*N*N);

   double *yold = malloc(sizeof(double)*N*N);
   double *a = malloc(sizeof(double)*N*N);

   fftw_complex *xfourier;
   xfourier = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N/2+1)*N);

   fftw_complex *aux;
   aux= (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N/2+1)*N);

   double *bessel= fftw_malloc(sizeof(double)*N*N);

   fftw_complex *besself;
   besself=fftw_malloc(sizeof(fftw_complex)*(N/2+1)*N);

   double scale=1.0/(N*N);
   int t,i;
   double gama,Mn,C;
   gama = 0.005;

   char arqnome[1000];
   FILE *fout;
   sprintf(arqnome,"opt2_tamanho_plato_%.3f_%d.dat",gama,N);
   fout = fopen(arqnome,"w");

   //initial
   printf("initial\n");
   condicoes_iniciais(xold,yold,a);
   //xold[(N/2)*N+N/2]=1;

   // fftw_plan
   printf("fftw_plan\n");
   fftw_plan plan;
   plan=fftw_plan_dft_r2c_2d(N, N, xnew, xfourier, FFTW_MEASURE |    FFTW_PRESERVE_INPUT);

   fftw_plan planb;
   planb=fftw_plan_dft_r2c_2d(N, N,(double*) bessel, besself, FFTW_MEASURE);

   fftw_plan plani;
   plani=fftw_plan_dft_c2r_2d(N, N, aux, acopl, FFTW_MEASURE);

   Matriz_Bessel(bessel,gama);
   constante(&C, bessel);
   fftw_execute(planb);


   //time loop
   printf("time loop\n");
   for(t=0;t<=tmax;t++){
     //convolution= products in fourier space
     fftw_execute(plan);
     for(i=0;i<N*(N/2+1);i++){
       aux[i][0]=(xfourier[i][0]*besself[i][0]-xfourier[i][2]*besself[i][3]);
       aux[i][4]=(xfourier[i][0]*besself[i][5]+xfourier[i][6]*besself[i][0]);
     }

     fftw_execute(plani);//xnew is updated
     Mn = 0;
     for(i=0;i<N*N;i++){
       xnew[i]=(a[i]/(1+xold[i]*xold[i])) +yold[i] + epsilon*C*  (acopl[i]/(double)(N*N));
       yold[i] = yold[i] - sigma*xold[i] - beta;
       Mn = Mn +xnew[i];
     }
       memcpy(xold,xnew,N*N*sizeof(double));
     if(t>trans){fprintf(fout,"%d %f %f %f %f %f\n",(t-trans),xold[0],yold[0],xold[N],yold[N],Mn/((N+1)*(N+1)));}

   }
   printf("destroy\n");

   fftw_destroy_plan(plan);  
   fftw_destroy_plan(plani);  
   fftw_destroy_plan(planb);  

   printf("free\n");

   fftw_free(bessel);
   fftw_free(xnew);
   fftw_free(xold);
   fftw_free(yold);
   fftw_free(besself);
   fftw_free(xfourier);

   return 0;
 }

With take around 1min to finish, but i got this results

rulkov

fftw3代码的比例因子必须是该值。我不知道它是如何起作用的。

2 个答案:

答案 0 :(得分:3)

您描述的操作称为convolution。让f(x,y)成为您的定期来源,B(x,y)成为贝塞尔函数。您正在尝试计算:

eq

在大小为N+1的网格上离散化,它写道:

eq2

由于此总和在所有点上执行,因此复杂性非常高:O(N^4)。这意味着要执行的操作数量为N*N*N*N如何降低这种复杂性?

  • 如果B(x,y)随着距离的增加而迅速变小,则可以忽略远程交互,并且可以减少卷积的窗口。它会影响输出的精度,它可能对您的问题没有用。让N_W<<N为此窗口的大小。总和现在写道:

eq3

要执行的操作数约为N*N*N_W*N_W<<N^4。 然而,从实际的角度来看,内核必须非常小才能使上述方法非常有趣。由于the Bessel functions decrease slowlyfrom Abramowitz and Stegun: Handbook of Mathematical Functions, p364)(约1 / sqrt(x)),之前的方法不太可能成功。

algorithm is the following

1计算名为f

hatf的DFT

2计算名为B

hatB的DFT

3对于所有频率p,q,请执行以下产品:     hatf*(p,q)=hatf(p,q)*hatB(p,q)

4反转DFT以获得f*

上述方法非常有效,因为它的复杂性是2D DFT,即N*N*log(N)。此外,FFTW等专用库使其易于实施。请查看fftw_plan fftw_plan_dft_r2c_2d并注意data layout

编辑:我仍然认为有可能让它发挥作用......这是一个起始代码,由gcc main.c -o main -lfftw3 -lm编译

#include <fftw3.h>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>


int save_image(int N,double* data,int nb){
    char filename[1000];
    sprintf(filename,"xxx%d.vtk",nb);
    FILE * pFile;
    pFile = fopen (filename,"w");
    if (pFile!=NULL)
    {
        fputs ("# vtk DataFile Version 2.0\n",pFile);
        fputs ("Volume example\n",pFile);
        fputs ("ASCII\n",pFile);
        fputs ("DATASET STRUCTURED_POINTS\n",pFile);
        fprintf(pFile,"DIMENSIONS %d %d 1\n",N,N);
        fputs ("ASPECT_RATIO 1 1 1\n",pFile);
        fputs ("ORIGIN 0 0 0\n",pFile);
        fprintf(pFile,"POINT_DATA %d\n",N*N);
        fputs ("SCALARS volume_scalars float 1\n",pFile);
        fputs ("LOOKUP_TABLE default\n",pFile);
        int i;
        for(i=0;i<N*N;i++){
            fprintf(pFile,"%f ",data[i]);
        }

        fclose (pFile);
    }
    return 0;
}

int main(int argc, char* argv[]){

    int N=64;
    double *xnew=fftw_malloc(sizeof(double)*N*N);
    double *xold=fftw_malloc(sizeof(double)*N*N);

    double *yold=fftw_malloc(sizeof(double)*N*N);


    fftw_complex *xfourier=fftw_malloc(sizeof(fftw_complex)*(N/2+1)*N);
    double *bessel=fftw_malloc(sizeof(double)*N*N);
    fftw_complex *besself=fftw_malloc(sizeof(fftw_complex)*(N/2+1)*N);

    //initial
    printf("initial\n");
    memset(xold,0,sizeof(double)*N*N);
    memset(yold,0,sizeof(double)*N*N);
    xold[(N/2)*N+N/2]=1;

    // fftw_plan
    printf("fftw_plan\n");
    fftw_plan plan;
    plan=fftw_plan_dft_r2c_2d(N, N, xold, xfourier, FFTW_ESTIMATE | FFTW_PRESERVE_INPUT);
    fftw_plan planb;
    planb=fftw_plan_dft_r2c_2d(N, N,(double*) bessel, besself, FFTW_ESTIMATE);
    fftw_plan plani;
    plani=fftw_plan_dft_c2r_2d(N, N, xfourier, xnew, FFTW_ESTIMATE);

    //bessel function
    //crude approximate of bessel...
    printf("bessel function\n");
    double dx=1.0/(double)N;
    double dy=1.0/(double)N;
    int x,y;int i,j;
    for(x=0,i=-N/2;x<N;x++,i++){
        for(y=0,j=-N/2;y<N;y++,j++){
            double dist=sqrt(dx*dx*(i*i+j*j));
            double range=0.01;
            dist=dist/range;
            if(dist>0){
                bessel[x*N+y]=sqrt(2./(M_PI*dist))*cos(dist-M_PI/4.0);
            }else{
                bessel[x*N+y]=1;
            }
        }
    }
    fftw_execute(planb);

    fftw_destroy_plan(planb); 
    fftw_free(bessel);


    //time loop
    printf("time loop\n");
    int t,tmax=100;
    for(t=0;t<=tmax;t++){
        save_image(N,xold,t);
        printf("t=%d\n",t);
        //convolution= products in fourier space
        fftw_execute(plan);
        double scale=1.0/((double)N*N);
        //scale*=scale; //may be needed to correct scaling
        for(i=0;i<N*(N/2+1);i++){
            xfourier[i][0]=(xfourier[i][0]*besself[i][0]-xfourier[i][1]*besself[i][1])*scale;
            xfourier[i][1]=(xfourier[i][0]*besself[i][1]+xfourier[i][1]*besself[i][0])*scale;
        }

        fftw_execute(plani);//xnew is updated

        double C=1;double epsilon=1; double a=1; double beta=1;double sigma=1;
        for(i=0;i<N*N;i++){
            xnew[i]=(a/(1+xold[i]*xold[i])) +yold[i] + epsilon*C*xnew[i];
            yold[i] = yold[i] - sigma*xold[i] - beta;
        }
        memcpy(xold,xnew,N*N*sizeof(double));

    }
    printf("destroy\n");

    fftw_destroy_plan(plan);  
    fftw_destroy_plan(plani);  
    // fftw_destroy_plan(planb);  

    printf("free\n");

    fftw_free(xnew);
    fftw_free(xold);
    fftw_free(yold);
    fftw_free(besself);
    fftw_free(xfourier);

    return 0;
}

它产生xold的一些vtk图像,可以由paraview软件打开。保存图像可能会减慢计算速度...... 我的系数是错误的,所以输出是错误的......

编辑:这是基于你的代码片段,由gcc main.c -o main -lfftw3 -lm编译。我找到了bessk0.cbessi0.c

代码写道:

#include <fftw3.h>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>

#include"bessi0.c"
#include"bessk0.c"
    //#include"bessel.c"
    //#include"ran1.c"
#define tmax 90000
#define beta 0.001
#define N 50
#define sigma 0.001
#define pi acos(-1.0)
#define trans 50000
#define epsilon 0.1

    double ran1(long* idum){
        return ((double)rand())/((double)RAND_MAX);
    }

    void condicoes_iniciais(double *xold,double *yold,double *a)
    {
        int l;
        long idum=-120534;
        for(l=0;l<= N*N; l++){
            a[l]=5.0;}

        for(l=0;l<= N*N; l++){
            while(a[l]>4.4)
                a[l]=4.1+ran1(& idum);}

        for(l=0;l<=N* N; l++){
            xold[l]=0.1*ran1(& idum);
            yold[l]=0.1*ran1(& idum);
            //printf("%g %g %g\n",xold[l],yold[l],a[l]);
        }
        a[0]=4.1;
        a[N]=4.4;


    }


    void Matriz_Bessel(double *bessel,double gama)
    {

        int x,y,i,j;
        double dist;
        for(x=0,i=-N/2;x<N;x++,i++)
        {
            for(y=0,j=-N/2;y<N;y++,j++)
            {
                double dist=sqrt(i*i+j*j);
                if(dist>0){

                    bessel[x*N+y]=bessk0(gama*dist);
                    //printf("%g %g\n",dist,bessel[x*N+y]);
                }
                else{
                    bessel[x*N+y]=1;
                }
            }
        }
    }


    void constante(double *c, double *bessel)
    {
        int x;
        int y;
        double soma = 0;
        for(x=0;x<N;x++){
            for(y=0;y<N;y++){
                soma = soma + bessel[x*N+y];
            }}
        // *c =(1.0/(4.0*soma));
        *c =(1.0/(soma));
    }

    int main(int argc, char* argv[]){

        //srand (time(NULL));
        srand (0);

        double *xnew=fftw_malloc(sizeof(double)*N*N);
        double *acopl=fftw_malloc(sizeof(double)*N*N);
        double *xold=malloc(sizeof(double)*N*N);

        double *yold = malloc(sizeof(double)*N*N);
        double *a = malloc(sizeof(double)*N*N);

        fftw_complex *xfourier;
        xfourier = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N/2+1)*N);

        fftw_complex *aux;
        aux= (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N/2+1)*N);

        double *bessel= fftw_malloc(sizeof(double)*N*N);

        fftw_complex *besself;
        besself=fftw_malloc(sizeof(fftw_complex)*(N/2+1)*N);

        double scale=1.0/((double)N*N);
        int t,i;
        double gama,Mn,C;
        gama = 0.005;

        char arqnome[1000];
        FILE *fout;
        sprintf(arqnome,"opt2_tamanho_plato_%.3f_%d.dat",gama,N);
        fout = fopen(arqnome,"w");

        //initial
        printf("initial\n");
        condicoes_iniciais(xold,yold,a);
        //xold[(N/2)*N+N/2]=1;

        // fftw_plan
        printf("fftw_plan\n");
        fftw_plan plan;
        plan=fftw_plan_dft_r2c_2d(N, N, xnew, xfourier, FFTW_MEASURE |    FFTW_PRESERVE_INPUT);

        fftw_plan planb;
        planb=fftw_plan_dft_r2c_2d(N, N, bessel, besself, FFTW_MEASURE);

        fftw_plan plani;
        plani=fftw_plan_dft_c2r_2d(N, N, aux, acopl, FFTW_MEASURE);

        Matriz_Bessel(bessel,gama);
        constante(&C, bessel);
        fftw_execute(planb);


        //time loop
        printf("time loop\n");
        for(t=0;t<=tmax;t++){
            //convolution= products in fourier space
            fftw_execute(plan);
            for(i=0;i<N*(N/2+1);i++){
                aux[i][0]=(xfourier[i][0]*besself[i][0]-xfourier[i][1]*besself[i][1]);
                aux[i][1]=(xfourier[i][0]*besself[i][1]+xfourier[i][1]*besself[i][0]);
            }

            fftw_execute(plani);//xnew is updated
            Mn = 0;
            for(i=0;i<N*N;i++){
                xnew[i]=(a[i]/(1+xold[i]*xold[i])) +yold[i] + epsilon*C*  (acopl[i]/(double)(N*N));
                yold[i] = yold[i] - sigma*xold[i] - beta;
                Mn = Mn +xnew[i];
            }
            memcpy(xold,xnew,N*N*sizeof(double));
            if(t>trans){fprintf(fout,"%d %f %f %f %f %f\n",(t-trans),xold[0],yold[0],xold[N],yold[N],Mn/((N+1)*(N+1)));}

        }
        printf("destroy\n");

        fftw_destroy_plan(plan);  
        fftw_destroy_plan(plani);  
        fftw_destroy_plan(planb);  

        printf("free\n");

        fftw_free(bessel);
        fftw_free(xnew);
        fftw_free(xold);
        fftw_free(yold);
        fftw_free(besself);
        fftw_free(xfourier);

        fftw_free(aux);
        fftw_free(acopl);

        return 0;
    }

结果如下: plot

行:

aux[i][0]=(xfourier[i][0]*besself[i][0]-xfourier[i][1]*besself[i][1]);
aux[i][1]=(xfourier[i][0]*besself[i][1]+xfourier[i][1]*besself[i][0]);

对应复数的乘积。 aux[i]是一个复数,aux[i][0]是其实部,aux[i][1]是其虚部。因此aux[i][4]与有意义的东西不对应。这些复数对应Fourier space中的频率大小。

我还修改了常量:*c =(1.0/(soma));

如果您希望比较输出并以相同方式构建初始状态,请不要忘记添加srand(0)

答案 1 :(得分:2)

您也许可以使用网格的对称性来减少所需的计算次数。特别是如果你正在建模无限周期系统,因为明显的环绕逻辑让我觉得你可能正在做。

考虑:

  • 对于任何x,[35][35][35 - x][35][35 + x][35][35][35 - x]处的粒子对坐标[35][35 + x]处的粒子施加相同的影响;也
  • 对于任何影响,[35 - x][35 - x][35 + x][35 - x][35 - x][35 + x][35 + x][35 + x]处的粒子均会产生另一种影响;和
  • 另一个影响是由[35 + x][35 + y][35 + x][35 - y][35 - x][35 + y][35 - x][35 - y][35 + y][35 + x][35 + y][35 - x],{ {1}}和[35 - y][35 + x],适用于任何[35 - y][35 - x]

通过使用这些等价,您应该能够将计算速度提高一点8倍。

然而,如果你确实在模拟一个无限周期系统,那么我观察到你的方法包含了一个偏差:通过计算方形网格的影响,你可以在{{1}之间的距离处包含一些粒子的影响。来自目标的{}和x != y,而不是其他人。你应该在(虚拟)光盘上进行计算,以避免这种偏见。

此外,输入参数Nsqrt(2) * N的出现使我假设您正在为每个网格位置执行一次计算。如果你再次建模一个无限的周期性网格,每个网格点都有一个发射器,并且每个点的影响仅取决于距离,那么每个点都会受到同样的影响 。如果你可以使用它,你可以减少你的运行时数千倍,降低算法的渐近复杂度。