我有一个类似的方程式
该算法由Lankton实施,您可以在code下载代码和图片。我想基于该代码来绘制能量函数。请注意,F是在该代码中计算的。我的目标能量数字如
我试图通过该代码实现它。但这不是正确答案
Energy=[];
%--main loop
for its = 1:max_its % Note: no automatic convergence test
%-- get the curve's narrow band
idx = find(phi <= 1.2 & phi >= -1.2)';
[y x] = ind2sub(size(phi),idx);
%-- get windows for localized statistics
xneg = x-rad; xpos = x+rad; %get subscripts for local regions
yneg = y-rad; ypos = y+rad;
xneg(xneg<1)=1; yneg(yneg<1)=1; %check bounds
xpos(xpos>dimx)=dimx; ypos(ypos>dimy)=dimy;
%-- re-initialize u,v,Ain,Aout
u=zeros(size(idx)); v=zeros(size(idx));
Ain=zeros(size(idx)); Aout=zeros(size(idx));
F_energy=zeros(size(idx));
%-- compute local stats
for i = 1:numel(idx) % for every point in the narrow band
img = I(yneg(i):ypos(i),xneg(i):xpos(i)); %sub image
P = phi(yneg(i):ypos(i),xneg(i):xpos(i)); %sub phi
upts = find(P<=0); %local interior
Ain(i) = length(upts)+eps;
u(i) = sum(img(upts))/Ain(i);
vpts = find(P>0); %local exterior
Aout(i) = length(vpts)+eps;
v(i) = sum(img(vpts))/Aout(i);
F_energy(i)=sum((img(upts)-u(i)).^2)+sum((img(vpts)-v(i)).^2); %% Compute the first term in (5) without integrate
end
%-- get image-based forces
F = -(u-v).*(2.*I(idx)-u-v);
% Compute the second term in (5)
u=phi<=0;
bw2=bwperim(u);
Length_phi=sum(sum(bw2));
Energy=[Energy (sum(F_energy(:))+alpha.*Length_phi)];
end
也许这是一项艰巨的任务,因为能量函数非常复杂。但是,除了enrgy term之外,所有的东西都是通过上面的代码实现的。希望你能理解并帮助我画出能量函数。提前谢谢
这是我的数字结果。但是,它与纸张结果不相似。我的结果是在接近零点时能量最小。但论文的结果并非如此。我的代码中发生了什么。
答案 0 :(得分:2)
您确定您的参数与原始纸张中使用的参数类似吗?我观察到每次迭代中的能量至少取决于两件事:
该论文确实证实了这种关系:
B(x,y)功能选择的球的半径为a 使用局部能量时要考虑的重要参数。
和
所提方法的一个限制是它具有更大的优势 对初始化的敏感性高于基于全局区域的方法。
下图显示了我使用您的代码实现的目标:
请注意,在原始纸张中,X轴单位是秒。代码在每次迭代中为我们提供能量。如果不知道原始计算中的一次迭代的持续时间(在论文中描述),我们就无法真正比较这些图。然而,我的与原来的更相似。
这是初始化掩码的代码(对应于绘图):
I = imread('Mushroom.png'); %-- load the image
m = false(size(I,1),size(I,2)); %-- create initial mask
m(60:100,15:80) = true; %-- initial mask coordinates
最大迭代次数:400
半径:20
希望我帮助过。