随机页面成本和计划

时间:2010-05-25 06:13:04

标签: sql optimization postgresql

查询(见下文),使用这些气象站实际拥有数据的日期从城市的给定半径内的气象站提取气候数据。该查询使用表的唯一索引,而不是有效:

CREATE UNIQUE INDEX measurement_001_stc_idx
  ON climate.measurement_001
  USING btree
  (station_id, taken, category_id);

random_page_cost的服务器配置值从2.0降低到1.1,在给定范围(接近一个数量级)上有了巨大的性能提升,因为它向PostgreSQL建议它应该使用索引。虽然结果现在在5秒内返回(从~85秒下降),但仍存在问题线。将查询的结束日期提前一年会导致全表扫描:

sc.taken_start >= '1900-01-01'::date AND
sc.taken_end <= '1997-12-31'::date AND

如何说服PostgreSQL使用索引,无论两个日期之间的年份如何? (针对4300万行的全表扫描可能不是最佳计划。)在查询下方找到EXPLAIN ANALYZE结果。

谢谢!

查询

  SELECT
    extract(YEAR FROM m.taken) AS year,
    avg(m.amount) AS amount
  FROM
    climate.city c,
    climate.station s,
    climate.station_category sc,
    climate.measurement m
  WHERE
    c.id = 5182 AND
    earth_distance(
      ll_to_earth(c.latitude_decimal,c.longitude_decimal),
      ll_to_earth(s.latitude_decimal,s.longitude_decimal)) / 1000 <= 30 AND
    s.elevation BETWEEN 0 AND 3000 AND
    s.applicable = TRUE AND
    sc.station_id = s.id AND
    sc.category_id = 1 AND
    sc.taken_start >= '1900-01-01'::date AND
    sc.taken_end <= '1996-12-31'::date AND
    m.station_id = s.id AND
    m.taken BETWEEN sc.taken_start AND sc.taken_end AND
    m.category_id = sc.category_id
  GROUP BY
    extract(YEAR FROM m.taken)
  ORDER BY
    extract(YEAR FROM m.taken)

1900年至1996年:指数

"Sort  (cost=1348597.71..1348598.21 rows=200 width=12) (actual time=2268.929..2268.935 rows=92 loops=1)"
"  Sort Key: (date_part('year'::text, (m.taken)::timestamp without time zone))"
"  Sort Method:  quicksort  Memory: 32kB"
"  ->  HashAggregate  (cost=1348586.56..1348590.06 rows=200 width=12) (actual time=2268.829..2268.886 rows=92 loops=1)"
"        ->  Nested Loop  (cost=0.00..1344864.01 rows=744510 width=12) (actual time=0.807..2084.206 rows=134893 loops=1)"
"              Join Filter: ((m.taken >= sc.taken_start) AND (m.taken <= sc.taken_end) AND (sc.station_id = m.station_id))"
"              ->  Nested Loop  (cost=0.00..12755.07 rows=1220 width=18) (actual time=0.502..521.937 rows=23 loops=1)"
"                    Join Filter: ((sec_to_gc(cube_distance((ll_to_earth((c.latitude_decimal)::double precision, (c.longitude_decimal)::double precision))::cube, (ll_to_earth((s.latitude_decimal)::double precision, (s.longitude_decimal)::double precision))::cube)) / 1000::double precision) <= 30::double precision)"
"                    ->  Index Scan using city_pkey1 on city c  (cost=0.00..2.47 rows=1 width=16) (actual time=0.014..0.015 rows=1 loops=1)"
"                          Index Cond: (id = 5182)"
"                    ->  Nested Loop  (cost=0.00..9907.73 rows=3659 width=34) (actual time=0.014..28.937 rows=3458 loops=1)"
"                          ->  Seq Scan on station_category sc  (cost=0.00..970.20 rows=3659 width=14) (actual time=0.008..10.947 rows=3458 loops=1)"
"                                Filter: ((taken_start >= '1900-01-01'::date) AND (taken_end <= '1996-12-31'::date) AND (category_id = 1))"
"                          ->  Index Scan using station_pkey1 on station s  (cost=0.00..2.43 rows=1 width=20) (actual time=0.004..0.004 rows=1 loops=3458)"
"                                Index Cond: (s.id = sc.station_id)"
"                                Filter: (s.applicable AND (s.elevation >= 0) AND (s.elevation <= 3000))"
"              ->  Append  (cost=0.00..1072.27 rows=947 width=18) (actual time=6.996..63.199 rows=5865 loops=23)"
"                    ->  Seq Scan on measurement m  (cost=0.00..25.00 rows=6 width=22) (actual time=0.000..0.000 rows=0 loops=23)"
"                          Filter: (m.category_id = 1)"
"                    ->  Bitmap Heap Scan on measurement_001 m  (cost=20.79..1047.27 rows=941 width=18) (actual time=6.995..62.390 rows=5865 loops=23)"
"                          Recheck Cond: ((m.station_id = sc.station_id) AND (m.taken >= sc.taken_start) AND (m.taken <= sc.taken_end) AND (m.category_id = 1))"
"                          ->  Bitmap Index Scan on measurement_001_stc_idx  (cost=0.00..20.55 rows=941 width=0) (actual time=5.775..5.775 rows=5865 loops=23)"
"                                Index Cond: ((m.station_id = sc.station_id) AND (m.taken >= sc.taken_start) AND (m.taken <= sc.taken_end) AND (m.category_id = 1))"
"Total runtime: 2269.264 ms"

1900年至1997年:全桌扫描

"Sort  (cost=1370192.26..1370192.76 rows=200 width=12) (actual time=86165.797..86165.809 rows=94 loops=1)"
"  Sort Key: (date_part('year'::text, (m.taken)::timestamp without time zone))"
"  Sort Method:  quicksort  Memory: 32kB"
"  ->  HashAggregate  (cost=1370181.12..1370184.62 rows=200 width=12) (actual time=86165.654..86165.736 rows=94 loops=1)"
"        ->  Hash Join  (cost=4293.60..1366355.81 rows=765061 width=12) (actual time=534.786..85920.007 rows=139721 loops=1)"
"              Hash Cond: (m.station_id = sc.station_id)"
"              Join Filter: ((m.taken >= sc.taken_start) AND (m.taken <= sc.taken_end))"
"              ->  Append  (cost=0.00..867005.80 rows=43670150 width=18) (actual time=0.009..79202.329 rows=43670079 loops=1)"
"                    ->  Seq Scan on measurement m  (cost=0.00..25.00 rows=6 width=22) (actual time=0.001..0.001 rows=0 loops=1)"
"                          Filter: (category_id = 1)"
"                    ->  Seq Scan on measurement_001 m  (cost=0.00..866980.80 rows=43670144 width=18) (actual time=0.008..73312.008 rows=43670079 loops=1)"
"                          Filter: (category_id = 1)"
"              ->  Hash  (cost=4277.93..4277.93 rows=1253 width=18) (actual time=534.704..534.704 rows=25 loops=1)"
"                    ->  Nested Loop  (cost=847.87..4277.93 rows=1253 width=18) (actual time=415.837..534.682 rows=25 loops=1)"
"                          Join Filter: ((sec_to_gc(cube_distance((ll_to_earth((c.latitude_decimal)::double precision, (c.longitude_decimal)::double precision))::cube, (ll_to_earth((s.latitude_decimal)::double precision, (s.longitude_decimal)::double precision))::cube)) / 1000::double precision) <= 30::double precision)"
"                          ->  Index Scan using city_pkey1 on city c  (cost=0.00..2.47 rows=1 width=16) (actual time=0.012..0.014 rows=1 loops=1)"
"                                Index Cond: (id = 5182)"
"                          ->  Hash Join  (cost=847.87..1352.07 rows=3760 width=34) (actual time=6.427..35.107 rows=3552 loops=1)"
"                                Hash Cond: (s.id = sc.station_id)"
"                                ->  Seq Scan on station s  (cost=0.00..367.25 rows=7948 width=20) (actual time=0.004..23.529 rows=7949 loops=1)"
"                                      Filter: (applicable AND (elevation >= 0) AND (elevation <= 3000))"
"                                ->  Hash  (cost=800.87..800.87 rows=3760 width=14) (actual time=6.416..6.416 rows=3552 loops=1)"
"                                      ->  Bitmap Heap Scan on station_category sc  (cost=430.29..800.87 rows=3760 width=14) (actual time=2.316..5.353 rows=3552 loops=1)"
"                                            Recheck Cond: (category_id = 1)"
"                                            Filter: ((taken_start >= '1900-01-01'::date) AND (taken_end <= '1997-12-31'::date))"
"                                            ->  Bitmap Index Scan on station_category_station_category_idx  (cost=0.00..429.35 rows=6376 width=0) (actual time=2.268..2.268 rows=6339 loops=1)"
"                                                  Index Cond: (category_id = 1)"
"Total runtime: 86165.936 ms"

2 个答案:

答案 0 :(得分:2)

看起来Postgres高估了一个城市5182附近有多少站。它认为有1220但只有23个。

您可以通过两个查询来强制获取电台,如下所示(未经测试,可能需要推文):

start transaction;
create temporary table s(id int);
insert into s
  select id from
    climate.city c,
    climate.station s
  where
    c.id = 5182 AND
    earth_distance(
      ll_to_earth(c.latitude_decimal,c.longitude_decimal),
      ll_to_earth(s.latitude_decimal,s.longitude_decimal)) / 1000 <= 30 AND
    s.elevation BETWEEN 0 AND 3000 AND
    s.applicable = TRUE;
analyze s;

SELECT
    extract(YEAR FROM m.taken) AS year,
    avg(m.amount) AS amount
  FROM
    climate.station_category sc,
    climate.measurement m,
    s
  WHERE
    sc.category_id = 1 AND
    sc.taken_start >= '1900-01-01'::date AND
    sc.taken_end <= '1996-12-31'::date AND
    m.station_id = sc.station_id AND
    m.taken BETWEEN sc.taken_start AND sc.taken_end AND
    m.category_id = sc.category_id AND
    sc.station_id = s.id
  GROUP BY
    extract(YEAR FROM m.taken)
  ORDER BY
    extract(YEAR FROM m.taken);
rollback;

此查询还可以set enable_seqscan=off。这将迫使Postgres不惜一切代价避免顺序扫描。

答案 1 :(得分:1)

问题是站点ID没有按顺序分布在测量表中。解决方案:

CREATE UNIQUE INDEX measurement_001_stc_index
  ON climate.measurement_001
  USING btree
  (station_id, taken, category_id);
ALTER TABLE climate.measurement_001 CLUSTER ON measurement_001_stc_index;

通过在列上强制CLUSTER,工作站ID在磁盘上与表的自然顺序物理对齐。这使性能提高了一个数量级。