我希望并行化一个函数,它将使用Pool而不是Process更新共享字典,这样我就不会过多地分配cpu。
即。我可以拿这个
def my_function(bar,results):
results[bar] = bar*10
def paralell_XL():
from multiprocessing import Pool, Manager, Process
manager = Manager()
results=manager.dict()
jobs = []
for bar in foo:
p=Process(target=my_function, args=(bar, results))
jobs.append(p)
p.start()
for proc in jobs:
proc.join()
并将paralell_XL()函数更改为这样的东西?
def paralell_XL():
from multiprocessing import Pool, Manager, Process
manager = Manager()
results=manager.dict()
p = Pool(processes=4)
p.map(my_function,(foo,results))
尝试以上操作会出现以下错误
TypeError: unsupported operand type(s) for //: 'int' and 'DictProxy'
感谢
答案 0 :(得分:1)
所以问题在于将许多参数传递给池。正如此处Python multiprocessing pool.map for multiple arguments所示,您只需将其变为元组并添加包装器即可。这适用于传递manager.dict作为参数。
def my_function(bar,results):
results[bar] = bar*10
def func_star(a_b):
"""Convert `f([1,2])` to `f(1,2)` call."""
return my_function(*a_b)
def paralell_XL():
from multiprocessing import Pool, Manager, Process
import itertools
manager = Manager()
results=manager.dict()
pool = Pool(processes=4)
pool.map(func_star, itertools.izip(foo, itertools.repeat(results)))
(注意我认为这个问题+答案是值得保留的,因为我不能完全清楚你能够以这种方式将manager.dict传递给函数)