在R中并行循环

时间:2015-03-04 14:39:18

标签: r parallel-processing vectorization

我有data.frame 发送,其中发送$ words 中的句子和带有pos / neg字词的词典 wordsDF 数据框(wordsDF [的x,1])。正值= 1,负数= -1(wordsDF [x,2])。该单词DF数据帧中的单词根据其长度(字符串的长度)按递减顺序排序。我将此目的用于以下功能。

此功能的工作原理:

1)通过每个句子计算存储在wordsDF中的单词的出现次数 2)计算情绪分数:特定句子中特定单词(wordsDF)的出现次数*该单词的情感值(正= 1,负= -1) 3)从句子中删除匹配的单词以进行另一次迭代。

使用 stringr 包的原始解决方案:

scoreSentence_01 <- function(sentence){
  score <- 0
  for(x in 1:nrow(wordsDF)){
    count <- str_count(sentence, wordsDF[x,1])
    score <- (score + (count * wordsDF[x,2])) # compute score (count * sentValue)
    sentence <- str_replace_all(sentence, wordsDF[x,1], " ")
  }
  score
}

更快的解决方案 - 第4行和第5行替换原始解决方案中的第4行。

scoreSentence_02 <- function(sentence){
  score <- 0
  for(x in 1:nrow(wordsDF)){
    sd <- function(text) {stri_count(text, regex=wordsDF[x,1])}
    results <- sapply(sentence, sd, USE.NAMES=F)
    score <- (score + (results * wordsDF[x,2])) # compute score (count * sentValue)
    sentence <- str_replace_all(sentence, wordsDF[x,1], " ")
  }
  score
}

调用函数是:

scoreSentence_Score <- scoreSentence_01(sent$words)

实际上我使用300.000个句子的数据集和带有正面和负面单词的词典 - 总共7.000个单词。这种方法非常缓慢,因为我在R编程中的初学者知识是我努力的结果。

请问有谁帮助我,如何将此功能重写为矢量化或并行解决方案。非常感谢任何帮助或建议。非常感谢你提前。

虚拟数据:

sent <- data.frame(words = c("great just great right size and i love this notebook", "benefits great laptop at the top",
                         "wouldnt bad notebook and very good", "very good quality", "bad orgtop but great",
                         "great improvement for that great improvement bad product but overall is not good", "notebook is not good but i love batterytop"), user = c(1,2,3,4,5,6,7),
                          stringsAsFactors=F)

posWords <- c("great","improvement","love","great improvement","very good","good","right","very","benefits",
          "extra","benefit","top","extraordinarily","extraordinary","super","benefits super","good","benefits great",
          "wouldnt bad")

negWords <- c("hate","bad","not good","horrible")

# Replicate original data.frame - big data simulation (700.000 rows of sentences)
df.expanded <- as.data.frame(replicate(10000,sent$words))
sent <- coredata(sent)[rep(seq(nrow(sent)),10000),]
sent$words <- paste(c(""), sent$words, c(""), collapse = NULL)
rownames(sent) <- NULL

# Ordering words in pos/negWords
wordsDF <- data.frame(words = posWords, value = 1,stringsAsFactors=F)
wordsDF <- rbind(wordsDF,data.frame(words = negWords, value = -1))
wordsDF$lengths <- unlist(lapply(wordsDF$words, nchar))
wordsDF <- wordsDF[order(-wordsDF[,3]),]
wordsDF$words <- paste(c(""), wordsDF$words, c(""), collapse = NULL)
rownames(wordsDF) <- NULL

所需的输出是:

                                                                        words user scoreSentence_Score
                         great just great right size and i love this notebook    1                   4
                                             benefits great laptop at the top    2                   2
                                           wouldnt bad notebook and very good    3                   2
                                                            very good quality    4                   1
                                                         bad orgtop but great    5                   0
 great improvement for that great improvement bad product but overall is not good    6                   0
                                   notebook is not good but i love batterytop    7                   0

2 个答案:

答案 0 :(得分:1)

好的,现在我知道你必须解决短语和单词......这是另一个镜头。基本上,你必须首先拆分你的短语,对它们进行评分,将它们从字符串中删除,然后对你的单词进行评分......

library(stringr)
sent <- data.frame(words = c("great just great right size and i love this notebook", "benefits great laptop at the top",
                             "wouldnt bad notebook and very good", "very good quality", "bad orgtop but great",
                             "great improvement for that great improvement bad product but overall is not good", "notebook is not good but i love batterytop"), user = c(1,2,3,4,5,6,7),
                   stringsAsFactors=F)

posWords <- c("great","improvement","love","great improvement","very good","good","right","very","benefits",
              "extra","benefit","top","extraordinarily","extraordinary","super","benefits super","good","benefits great",
              "wouldnt bad")

negWords <- c("hate","bad","not good","horrible")
sent$words2 <- sent$words
# split bad into words and phrases...
bad_phrases <- negWords[grepl(" ", negWords)]
bad_words <- negWords[!negWords %in% bad_phrases]
bad_words <- paste0("\\b", bad_words, "\\b")
pos_phrases <- posWords[grepl(" ", posWords)]
pos_words <- posWords[!posWords %in% pos_phrases]
pos_words <- paste0("\\b", pos_words, "\\b")
score <-  - str_count(sent$words2, paste(bad_phrases, collapse="|"))
sent$words2 <- gsub(paste(bad_phrases, collapse="|"), "", sent$words2)
score <- score + str_count(sent$words2, paste(pos_phrases, collapse="|"))
sent$words2 <- gsub(paste(pos_phrases, collapse="|"), "", sent$words2)
score <- score + str_count(sent$words2, paste(pos_words, collapse="|"))  - str_count(sent$words2, paste(bad_words, collapse="|")) 
score

答案 1 :(得分:0)

你不能这样做:

library("stringr")
scoreSentence_Score <- str_count(sent$words, wordsDF[,1]) - str_count(sent$words, wordsDF[,2])