素数计算的乐趣

时间:2008-11-13 20:38:53

标签: java primes

我们在工作中有点乐趣。这一切都始于其中一个设置Hackintosh的人,我们想知道它是否比我们拥有的(几乎)相同规格的Windows Box更快。所以我们决定为它写一点测试。只是一个简单的Prime数字计算器。它是用Java编写的,告诉我们计算前n个Prime数字所需的时间。

下面的优化版本 - 现在需要~6.6secs

public class Primes {

    public static void main(String[] args) {
        int topPrime = 150000;
        int current = 2;
        int count = 0;
        int lastPrime = 2;

        long start = System.currentTimeMillis();

        while (count < topPrime) {

            boolean prime = true;

            int top = (int)Math.sqrt(current) + 1;

            for (int i = 2; i < top; i++) {
                if (current % i == 0) {
                    prime = false;
                    break;
                }
            }

            if (prime) {
                count++;
                lastPrime = current;
            }
            if (current == 2) {
             current++;
            } else {
                current = current + 2;
            }
        }

        System.out.println("Last prime = " + lastPrime);
        System.out.println("Total time = " + (double)(System.currentTimeMillis() - start) / 1000);
    } 
}

我们几乎失去了整个Hackintosh与PC之间的关系,并且只是在优化它时获得了一些乐趣。没有优化的第一次尝试(上面的代码有一对)跑了大约52.6分钟找到第一个150000素数。此优化运行大约47.2分钟。

如果您想要发布并发布结果,请坚持下去。

运行它的PC的规格是Pentium D 2.8GHz,2GB RAM,运行Ubuntu 8.04。

迄今为止最佳优化是当前的平方根,最初由Jason Z提及。

18 个答案:

答案 0 :(得分:9)

这比我在1986年左右用8 Mhz 8088涡轮帕斯卡的筛子差一点。但那是在优化之后:)

答案 1 :(得分:9)

由于你是按升序搜索它们,你可以保留一个你已经找到的素数列表,只检查它们的可分性,因为所有非素数都可以简化为较小的素数列表因素。将其与前一个提示相结合,不检查当前数字的平方根上的因子,您将拥有一个非常有效的实现。

答案 2 :(得分:7)

嗯,我看到了几个可以做到的快速优化。 首先,您不必尝试每个数字,最多可达当前数字的一半。

相反,您只能尝试当前数字的平方根。

另一个优化是BP所说的扭曲: 而不是

int count = 0;
...
for (int i = 2; i < top; i++)
...
if (current == 2)
  current++;
else
  current += 2;

使用

int count = 1;
...
for (int i = 3; i < top; i += 2)
...
current += 2;

这应该可以加快速度。

修改
更多优化礼貌由Joe Pineda提供:
删除变量“top”。

int count = 1;
...
for (int i = 3; i*i <= current; i += 2)
...
current += 2;

如果这种优化确实增加速度取决于java 与乘以两个数字相比,计算平方根需要花费大量时间。但是,由于我们将乘法移动到for循环中,因此每个循环都会执行此操作。因此,这可能会降低速度,具体取决于java中的平方根算法的速度。

答案 3 :(得分:6)

这是一个快速而简单的解决方案:

  • 寻找低于100000的素数;在5毫秒内发现9592
  • 寻找低于1000000的素数;在20毫秒内发现78498
  • 查找小于10000000的素数;在143毫秒内发现664579
  • 寻找低于1亿的素数;在2024 ms发现5761455
  • 查找小于1000000000的素数; 50847534在23839 ms发现

    //returns number of primes less than n
    private static int getNumberOfPrimes(final int n)
    {
        if(n < 2) 
            return 0;
        BitSet candidates = new BitSet(n - 1);
        candidates.set(0, false);
        candidates.set(1, false);
        candidates.set(2, n);
        for(int i = 2; i < n; i++)
            if(candidates.get(i))
                for(int j = i + i; j < n; j += i)
                    if(candidates.get(j) && j % i == 0)
                        candidates.set(j, false);            
        return candidates.cardinality();
    }    
    

答案 4 :(得分:4)

我们需要一秒钟(2.4GHz)才能使用Sieve of Eratosthenes在Python中生成第一个150000素数:

#!/usr/bin/env python
def iprimes_upto(limit):
    """Generate all prime numbers less then limit.

    http://stackoverflow.com/questions/188425/project-euler-problem#193605
    """
    is_prime = [True] * limit
    for n in range(2, limit):
        if is_prime[n]:
           yield n
           for i in range(n*n, limit, n): # start at ``n`` squared
               is_prime[i] = False

def sup_prime(n):
    """Return an integer upper bound for p(n).

       p(n) < n (log n + log log n - 1 + 1.8 log log n / log n)

       where p(n) is the n-th prime. 
       http://primes.utm.edu/howmany.shtml#2
    """
    from math import ceil, log
    assert n >= 13
    pn = n * (log(n) + log(log(n)) - 1 + 1.8 * log(log(n)) / log(n))
    return int(ceil(pn))

if __name__ == '__main__':
    import sys
    max_number_of_primes = int(sys.argv[1]) if len(sys.argv) == 2 else 150000
    primes = list(iprimes_upto(sup_prime(max_number_of_primes)))
    print("Generated %d primes" % len(primes))
    n = 100
    print("The first %d primes are %s" % (n, primes[:n]))

示例:

$ python primes.py

Generated 153465 primes
The first 100 primes are [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 
43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 
127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197,
199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379,
383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463,
467, 479, 487, 491, 499, 503, 509, 521, 523, 541]

答案 5 :(得分:2)

在C#中:

class Program
{
    static void Main(string[] args)
    {
        int count = 0;
        int max = 150000;
        int i = 2;

        DateTime start = DateTime.Now;
        while (count < max)
        {
            if (IsPrime(i))
            {
                count++;
            }

            i++;

        }
        DateTime end = DateTime.Now;

        Console.WriteLine("Total time taken: " + (end - start).TotalSeconds.ToString() + " seconds");
        Console.ReadLine();
    }

    static bool IsPrime(int n)
    {
        if (n < 4)
            return true;
        if (n % 2 == 0)
            return false;

        int s = (int)Math.Sqrt(n);
        for (int i = 2; i <= s; i++)
            if (n % i == 0)
                return false;

        return true;
    }
}

输出:

总时间:2.087秒

答案 6 :(得分:1)

请记住,有更好的方法来寻找素数......

我认为你可以采取这种循环:

  

for (int i = 2; i < top; i++)

然后使你的计数器变量i从3开始并且只尝试对奇数进行修改,因为除了2之外的所有素数都不会被任何偶数整除。

答案 7 :(得分:1)

是否重新声明变量prime

        while (count < topPrime) {

            boolean prime = true;
循环中的

使其效率低下? (我认为这没关系,因为我认为Java会对此进行优化)

boolean prime;        
while (count < topPrime) {

            prime = true;

答案 8 :(得分:0)

这是我的贡献:

机器:2.4GHz四核i7 w / 8GB RAM @ 1600MHz

编译器:clang++ main.cpp -O3

基准:

Caelans-MacBook-Pro:Primer3 Caelan$ ./a.out 100

Calculated 25 prime numbers up to 100 in 2 clocks (0.000002 seconds).
Caelans-MacBook-Pro:Primer3 Caelan$ ./a.out 1000

Calculated 168 prime numbers up to 1000 in 4 clocks (0.000004 seconds).
Caelans-MacBook-Pro:Primer3 Caelan$ ./a.out 10000

Calculated 1229 prime numbers up to 10000 in 18 clocks (0.000018 seconds).
Caelans-MacBook-Pro:Primer3 Caelan$ ./a.out 100000

Calculated 9592 prime numbers up to 100000 in 237 clocks (0.000237 seconds).
Caelans-MacBook-Pro:Primer3 Caelan$ ./a.out 1000000

Calculated 78498 prime numbers up to 1000000 in 3232 clocks (0.003232 seconds).
Caelans-MacBook-Pro:Primer3 Caelan$ ./a.out 10000000

Calculated 664579 prime numbers up to 10000000 in 51620 clocks (0.051620 seconds).
Caelans-MacBook-Pro:Primer3 Caelan$ ./a.out 100000000

Calculated 5761455 prime numbers up to 100000000 in 918373 clocks (0.918373 seconds).
Caelans-MacBook-Pro:Primer3 Caelan$ ./a.out 1000000000

Calculated 50847534 prime numbers up to 1000000000 in 10978897 clocks (10.978897 seconds).
Caelans-MacBook-Pro:Primer3 Caelan$ ./a.out 4000000000

Calculated 189961812 prime numbers up to 4000000000 in 53709395 clocks (53.709396 seconds).
Caelans-MacBook-Pro:Primer3 Caelan$ 

来源:

#include <iostream> // cout
#include <cmath> // sqrt
#include <ctime> // clock/CLOCKS_PER_SEC
#include <cstdlib> // malloc/free

using namespace std;

int main(int argc, const char * argv[]) {
    if(argc == 1) {
        cout << "Please enter a number." << "\n";
        return 1;
    }
    long n = atol(argv[1]);
    long i;
    long j;
    long k;
    long c;
    long sr;
    bool * a = (bool*)malloc((size_t)n * sizeof(bool));

    for(i = 2; i < n; i++) {
        a[i] = true;
    }

    clock_t t = clock();

    sr = sqrt(n);
    for(i = 2; i <= sr; i++) {
        if(a[i]) {
            for(k = 0, j = 0; j <= n; j = (i * i) + (k * i), k++) {
                a[j] = false;
            }
        }
    }

    t = clock() - t;

    c = 0;
    for(i = 2; i < n; i++) {
        if(a[i]) {
            //cout << i << " ";
            c++;
        }
    }

    cout << fixed << "\nCalculated " << c << " prime numbers up to " << n << " in " << t << " clocks (" << ((float)t) / CLOCKS_PER_SEC << " seconds).\n";

    free(a);

    return 0;
}

这使用了Erastothenes的Sieve方法,我已经根据我的知识尽可能地优化了它。欢迎改进。

答案 9 :(得分:0)

当我开始阅读关于素数的博客文章时,我在我的机器上找到了这个代码。 代码在C#中,我使用的算法来自我的头脑,虽然它可能在维基百科上的某个地方。 ;) 无论如何,它可以在大约300ms内获取前150000个素数。我发现n个第一个奇数的总和等于n ^ 2。同样,在维基百科上可能存在这样的证据。所以知道这一点,我可以写一个算法,它永远不必计算平方根,但我必须逐步计算才能找到素数。所以如果你想要Nth prime,这个算法必须先找到(N-1)前面的素数!就是这样。享受!


//
// Finds the n first prime numbers.
//
//count: Number of prime numbers to find.
//listPrimes: A reference to a list that will contain all n first prime if getLast is set to false.
//getLast: If true, the list will only contain the nth prime number.
//
static ulong GetPrimes(ulong count, ref IList listPrimes, bool getLast)
{
    if (count == 0)
        return 0;
    if (count == 1)
    {
        if (listPrimes != null)
        {
            if (!getLast || (count == 1))
                listPrimes.Add(2);
        }

        return count;
    }

    ulong currentSquare = 1;
    ulong nextSquare = 9;
    ulong nextSquareIndex = 3;
    ulong primesCount = 1;

    List dividers = new List();

    //Only check for odd numbers starting with 3.
    for (ulong curNumber = 3; (curNumber  (nextSquareIndex % div) == 0) == false)
                dividers.Add(nextSquareIndex);

            //Move to next square number
            currentSquare = nextSquare;

            //Skip the even dividers so take the next odd square number.
            nextSquare += (4 * (nextSquareIndex + 1));
            nextSquareIndex += 2;

            //We may continue as a square number is never a prime number for obvious reasons :).
            continue;
        }

        //Check if there is at least one divider for the current number.
        //If so, this is not a prime number.
        if (dividers.Exists(div => (curNumber % div) == 0) == false)
        {
            if (listPrimes != null)
            {
                //Unless we requested only the last prime, add it to the list of found prime numbers.
                if (!getLast || (primesCount + 1 == count))
                    listPrimes.Add(curNumber);
            }
            primesCount++;
        }
    }

    return primesCount;
}

答案 10 :(得分:0)

这是我的看法。该程序是用C编写的,在我的笔记本电脑上需要50毫秒(Core 2 Duo,1 GB Ram)。我将所有计算出的素数保存在一个数组中,并尝试将其除以直到数字的sqrt。当然,当我们需要非常大量的素数(尝试使用100000000)时,这不起作用,因为数组变得太大并且给出了seg错误。

/*Calculate the primes till TOTALPRIMES*/
#include <stdio.h>
#define TOTALPRIMES 15000

main(){
int primes[TOTALPRIMES];
int count;
int i, j, cpr;
char isPrime;

primes[0] = 2;
count = 1;

for(i = 3; count < TOTALPRIMES; i+= 2){
    isPrime = 1;

    //check divisiblity only with previous primes
    for(j = 0; j < count; j++){
        cpr = primes[j];
        if(i % cpr == 0){
            isPrime = 0;
            break;
        }
        if(cpr*cpr > i){
            break;
        }
    }
    if(isPrime == 1){
        //printf("Prime: %d\n", i);
        primes[count] = i;
        count++;
    }


}

printf("Last prime = %d\n", primes[TOTALPRIMES - 1]);
}
$ time ./a.out 
Last prime = 163841
real    0m0.045s
user    0m0.040s
sys 0m0.004s

答案 11 :(得分:0)

@Mark Ransom - 不确定这是否是java代码

他们会呻吟可能但是我希望使用范例重写我已经学会信任Java并且他们说要有一些乐趣,请确保他们理解规范没有说任何影响订购的返回结果集,你也可以将结果集点值()转换为一个列表类型给出我在记事本中的一次性,然后再做一个短的差事

===============开始未经测试的代码===============

package demo;

import java.util.List;
import java.util.HashSet;

class Primality
{
  int current = 0;
  int minValue;
  private static final HashSet<Integer> resultSet = new HashSet<Integer>();
  final int increment = 2;
  // An obvious optimization is to use some already known work as an internal
  // constant table of some kind, reducing approaches to boundary conditions.
  int[] alreadyKown = 
  {
     2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 
     43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 
     127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197,
     199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
     283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379,
     383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463,
     467, 479, 487, 491, 499, 503, 509, 521, 523, 541
  };
  // Trivial constructor.

  public Primality(int minValue)
   {
      this.minValue = minValue;
  }
  List calcPrimes( int startValue )
  {
      // eliminate several hundred already known primes 
      // by hardcoding the first few dozen - implemented 
      // from prior work by J.F. Sebastian
      if( startValue > this.minValue )
      {
          // Duh.
          current = Math.abs( start );
           do
           {
               boolean prime = true;
               int index = current;
               do
               {
                  if(current % index == 0)
                  {
                      // here, current cannot be prime so break.
                      prime = false;
                      break;
                   }
               while( --index > 0x00000000 );

               // Unreachable if not prime
               // Here for clarity

               if ( prime )
               {     
                   resultSet dot add ( or put or whatever it is )
                           new Integer ( current ) ;
               }
           }
           while( ( current - increment ) > this.minValue );
           // Sanity check
           if resultSet dot size is greater that zero
           {
              for ( int anInt : alreadyKown ) { resultSet.add( new Integer ( anInt ) );}
             return resultSet;
           }
           else throw an exception ....
      }

===============结束未经测试的代码===============

使用哈希集允许将结果搜索为B树,因此结果可以堆叠起来直到机器开始失败,然后该起点可以用于另一个测试块==一次运行结束用作构造函数值对于另一次运行,坚持已经完成的磁盘工作并允许增量前馈设计。现在烧坏了,循环逻辑需要分析。

补丁(加上添加sqrt):

  if(current % 5 == 0 )
  if(current % 7 == 0 )
  if( ( ( ( current % 12 ) +1 ) == 0) || ( ( ( current % 12 ) -1 ) == 0) ){break;}
  if( ( ( ( current % 18 ) +1 ) == 0) || ( ( ( current % 18 ) -1 ) == 0) ){break;}
  if( ( ( ( current % 24 ) +1 ) == 0) || ( ( ( current % 24 ) -1 ) == 0) ){break;}
  if( ( ( ( current % 36 ) +1 ) == 0) || ( ( ( current % 36 ) -1 ) == 0) ){break;}
  if( ( ( ( current % 24 ) +1 ) == 0) || ( ( ( current % 42 ) -1 ) == 0) ){break;}


// and - new work this morning:


package demo;

/**
 *
 * Buncha stuff deleted for posting .... duh.
 *
 * @author  Author
 * @version 0.2.1
 *
 * Note strings are base36
 */
public final class Alice extends java.util.HashSet<java.lang.String>
{
    // prints 14551 so it's 14 ½ seconds to get 40,000 likely primes
    // using Java built-in on amd sempron 1.8 ghz / 1600 mhz front side bus 256 k L-2
    public static void main(java.lang.String[] args)
    {
        try
        {
            final long start=System.currentTimeMillis();
            // VM exhibits spurious 16-bit pointer behaviour somewhere after 40,000
            final java.lang.Integer upperBound=new java.lang.Integer(40000);
            int index = upperBound.intValue();

            final java.util.HashSet<java.lang.String>hashSet
            = new java.util.HashSet<java.lang.String>(upperBound.intValue());//
            // Arbitraily chosen value, based on no idea where to start.
            java.math.BigInteger probablePrime
            = new java.math.BigInteger(16,java.security.SecureRandom.getInstance("SHA1PRNG"));
            do
            {
                java.math.BigInteger nextProbablePrime = probablePrime.nextProbablePrime();
                if(hashSet.add(new java.lang.String(nextProbablePrime.toString(Character.MAX_RADIX))))
                {
                    probablePrime = nextProbablePrime;
                    if( ( index % 100 ) == 0x00000000 )
                    {
                        // System.out.println(nextProbablePrime.toString(Character.MAX_RADIX));//
                        continue;
                    }
                    else
                    {
                        continue;
                    }
                }
                else
                {
                    throw new StackOverflowError(new String("hashSet.add(string) failed on iteration: "+
                    Integer.toString(upperBound.intValue() - index)));
                }
            }
            while(--index > 0x00000000);
            System.err.println(Long.toString( System.currentTimeMillis() - start));
        }
        catch(java.security.NoSuchAlgorithmException nsae)
        {
            // Never happen
            return;
        }
        catch(java.lang.StackOverflowError soe)
        {
            // Might happen
            System.out.println(soe.getMessage());//
            return;
        }
    }
}// end class Alice

答案 12 :(得分:0)

这是我的解决方案......它的速度相当快......它可以在我的机器(Core i7 @ 2.93Ghz)上在3秒内计算1到10,000,000之间的质数。

我的解决方案是C语言,但我不是专业的C程序员。随意批评算法和代码本身:)

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<time.h>

//5MB... allocate a lot of memory at once each time we need it
#define ARRAYMULT 5242880 


//list of calculated primes
__int64* primes; 
//number of primes calculated
__int64 primeCount;
//the current size of the array
__int64 arraySize;

//Prints all of the calculated primes
void PrintPrimes()
{
    __int64 i;
    for(i=0; i<primeCount; i++)
    {
        printf("%d ", primes[i]);
    }

}

//Calculates all prime numbers to max
void CalcPrime(__int64 max)
{
    register __int64 i;
    double square;
    primes = (__int64*)malloc(sizeof(__int64) * ARRAYMULT);
    primeCount = 0;
    arraySize = ARRAYMULT;

    //we provide the first prime because its even, and it would be convenient to start
    //at an odd number so we can skip evens.
    primes[0] = 2;
    primeCount++;



    for(i=3; i<max; i+=2)
    {
        int j;
        square = sqrt((double)i);

        //only test the current candidate against other primes.
        for(j=0; j<primeCount; j++)
        {
            //prime divides evenly into candidate, so we have a non-prime
            if(i%primes[j]==0)
                break;
            else
            {
                //if we've reached the point where the next prime is > than the square of the
                //candidate, the candidate is a prime... so we can add it to the list
                if(primes[j] > square)
                {
                    //our array has run out of room, so we need to expand it
                    if(primeCount >= arraySize)
                    {
                        int k;
                        __int64* newArray = (__int64*)malloc(sizeof(__int64) * (ARRAYMULT + arraySize));

                        for(k=0; k<primeCount; k++)
                        {
                            newArray[k] = primes[k];
                        }

                        arraySize += ARRAYMULT;
                        free(primes);
                        primes = newArray;
                    }
                    //add the prime to the list
                    primes[primeCount] = i;
                    primeCount++;
                    break;

                }
            }

        }

    }


}
int main()
{
    int max;
    time_t t1,t2;
    double elapsedTime;

    printf("Enter the max number to calculate primes for:\n");
    scanf_s("%d",&max);
    t1 = time(0);
    CalcPrime(max);
    t2 = time(0);
    elapsedTime = difftime(t2, t1);
    printf("%d Primes found.\n", primeCount);
    printf("%f seconds elapsed.\n\n",elapsedTime);
    //PrintPrimes();
    scanf("%d");
    return 1;
}

答案 13 :(得分:0)

我敢打赌Miller-Rabin会更快。如果你测试足够多的连续数字就会变得确定,但我甚至都不会打扰。一旦随机算法达到其失败率等于CPU打嗝导致错误结果的可能性的程度,它就不再重要了。

答案 14 :(得分:0)

我决定在F#尝试这个,这是我第一次尝试它。在我的2.2Ghz Core 2 Duo上使用Eratosthenes的Sieve,它在大约200毫秒内运行2..150,000。每次它自己调用它时,它会从列表中消除当前的倍数,因此随着它的变化它会变得更快。这是我在F#中的第一次尝试,所以任何建设性的评论都会受到赞赏。

let max = 150000
let numbers = [2..max]
let rec getPrimes sieve max =
    match sieve with
    | [] -> sieve
    | _ when sqrt(float(max)) < float sieve.[0] -> sieve
    | _ -> let prime = sieve.[0]
           let filtered = List.filter(fun x -> x % prime <> 0) sieve // Removes the prime as well so the recursion works correctly.
           let result = getPrimes filtered max
           prime::result        // The filter removes the prime so add it back to the primes result.

let timer = System.Diagnostics.Stopwatch()
timer.Start()
let r = getPrimes numbers max
timer.Stop()
printfn "Primes: %A" r
printfn "Elapsed: %d.%d" timer.Elapsed.Seconds timer.Elapsed.Milliseconds

答案 15 :(得分:0)

你应该能够通过仅评估奇数来使内循环快两倍。不确定这是否是有效的Java,我已经习惯了C ++,但我确信它可以适应。

            if (current != 2 && current % 2 == 0)
                    prime = false;
            else {
                    for (int i = 3; i < top; i+=2) {
                            if (current % i == 0) {
                                    prime = false;
                                    break;
                            }
                    }
            }

答案 16 :(得分:0)

我对优化的看法,避免过于神秘的伎俩。我使用I-GIVE-TERRIBLE-ADVICE提供的技巧,我知道并忘记了......: - )

public class Primes
{
  // Original code
  public static void first()
  {
    int topPrime = 150003;
    int current = 2;
    int count = 0;
    int lastPrime = 2;

    long start = System.currentTimeMillis();

    while (count < topPrime) {

      boolean prime = true;

      int top = (int)Math.sqrt(current) + 1;

      for (int i = 2; i < top; i++) {
        if (current % i == 0) {
          prime = false;
          break;
        }
      }

      if (prime) {
        count++;
        lastPrime = current;
//      System.out.print(lastPrime + " "); // Checking algo is correct...
      }
      if (current == 2) {
        current++;
      } else {
        current = current + 2;
      }
    }

    System.out.println("\n-- First");
    System.out.println("Last prime = " + lastPrime);
    System.out.println("Total time = " + (double)(System.currentTimeMillis() - start) / 1000);
  }

  // My attempt
  public static void second()
  {
    final int wantedPrimeNb = 150000;
    int count = 0;

    int currentNumber = 1;
    int increment = 4;
    int lastPrime = 0;

    long start = System.currentTimeMillis();

NEXT_TESTING_NUMBER:
    while (count < wantedPrimeNb)
    {
      currentNumber += increment;
      increment = 6 - increment;
      if (currentNumber % 2 == 0) // Even number
        continue;
      if (currentNumber % 3 == 0) // Multiple of three
        continue;

      int top = (int) Math.sqrt(currentNumber) + 1;
      int testingNumber = 5;
      int testIncrement = 2;
      do
      {
        if (currentNumber % testingNumber == 0)
        {
          continue NEXT_TESTING_NUMBER;
        }
        testingNumber += testIncrement;
        testIncrement = 6 - testIncrement;
      } while (testingNumber < top);
      // If we got there, we have a prime
      count++;
      lastPrime = currentNumber;
//      System.out.print(lastPrime + " "); // Checking algo is correct...
    }

    System.out.println("\n-- Second");
    System.out.println("Last prime = " + lastPrime);
    System.out.println("Total time = " + (double) (System.currentTimeMillis() - start) / 1000);
  }

  public static void main(String[] args)
  {
    first();
    second();
  }
}

是的,我使用了标记为“继续”,第一次在Java中尝试它们。
我知道我跳过前几个素数的计算,但它们是众所周知的,没有必要重新计算它们。 :-)如果需要,我可以硬编码输出!此外,它无论如何都没有给出决定性的优势。

结果:

- 首先 最后素数= 2015201
总时间= 4.281

- 第二个 最后素数= 2015201
总时间= 0.953

不错。我想,可能会有所改进,但过多的优化可能会破坏良好的代码。

答案 17 :(得分:0)

C#

Aistina's code的增强功能:

这利用了大于3的所有素数都是6n + 1或6n - 1的事实。

对于每次通过循环,增加1倍的速度增加了4-5%。

class Program
{       
    static void Main(string[] args)
    {
        DateTime start = DateTime.Now;

        int count = 2; //once 2 and 3

        int i = 5;
        while (count < 150000)
        {
            if (IsPrime(i))
            {
                count++;
            }

            i += 2;

            if (IsPrime(i))
            {
                count++;
            }

            i += 4;
        }

        DateTime end = DateTime.Now;

        Console.WriteLine("Total time taken: " + (end - start).TotalSeconds.ToString() + " seconds");
        Console.ReadLine();
    }

    static bool IsPrime(int n)
    {
        //if (n < 4)
        //return true;
        //if (n % 2 == 0)
        //return false;

        int s = (int)Math.Sqrt(n);
        for (int i = 2; i <= s; i++)
            if (n % i == 0)
                return false;

        return true;
    }
}