我们在工作中有点乐趣。这一切都始于其中一个设置Hackintosh的人,我们想知道它是否比我们拥有的(几乎)相同规格的Windows Box更快。所以我们决定为它写一点测试。只是一个简单的Prime数字计算器。它是用Java编写的,告诉我们计算前n个Prime数字所需的时间。
下面的优化版本 - 现在需要~6.6secs
public class Primes {
public static void main(String[] args) {
int topPrime = 150000;
int current = 2;
int count = 0;
int lastPrime = 2;
long start = System.currentTimeMillis();
while (count < topPrime) {
boolean prime = true;
int top = (int)Math.sqrt(current) + 1;
for (int i = 2; i < top; i++) {
if (current % i == 0) {
prime = false;
break;
}
}
if (prime) {
count++;
lastPrime = current;
}
if (current == 2) {
current++;
} else {
current = current + 2;
}
}
System.out.println("Last prime = " + lastPrime);
System.out.println("Total time = " + (double)(System.currentTimeMillis() - start) / 1000);
}
}
我们几乎失去了整个Hackintosh与PC之间的关系,并且只是在优化它时获得了一些乐趣。没有优化的第一次尝试(上面的代码有一对)跑了大约52.6分钟找到第一个150000素数。此优化运行大约47.2分钟。
如果您想要发布并发布结果,请坚持下去。
运行它的PC的规格是Pentium D 2.8GHz,2GB RAM,运行Ubuntu 8.04。
迄今为止最佳优化是当前的平方根,最初由Jason Z提及。
答案 0 :(得分:9)
这比我在1986年左右用8 Mhz 8088涡轮帕斯卡的筛子差一点。但那是在优化之后:)
答案 1 :(得分:9)
由于你是按升序搜索它们,你可以保留一个你已经找到的素数列表,只检查它们的可分性,因为所有非素数都可以简化为较小的素数列表因素。将其与前一个提示相结合,不检查当前数字的平方根上的因子,您将拥有一个非常有效的实现。
答案 2 :(得分:7)
嗯,我看到了几个可以做到的快速优化。 首先,您不必尝试每个数字,最多可达当前数字的一半。
相反,您只能尝试当前数字的平方根。
另一个优化是BP所说的扭曲: 而不是
int count = 0;
...
for (int i = 2; i < top; i++)
...
if (current == 2)
current++;
else
current += 2;
使用
int count = 1;
...
for (int i = 3; i < top; i += 2)
...
current += 2;
这应该可以加快速度。
修改强>
更多优化礼貌由Joe Pineda提供:
删除变量“top”。
int count = 1;
...
for (int i = 3; i*i <= current; i += 2)
...
current += 2;
如果这种优化确实增加速度取决于java 与乘以两个数字相比,计算平方根需要花费大量时间。但是,由于我们将乘法移动到for循环中,因此每个循环都会执行此操作。因此,这可能会降低速度,具体取决于java中的平方根算法的速度。
答案 3 :(得分:6)
这是一个快速而简单的解决方案:
查找小于1000000000的素数; 50847534在23839 ms发现
//returns number of primes less than n
private static int getNumberOfPrimes(final int n)
{
if(n < 2)
return 0;
BitSet candidates = new BitSet(n - 1);
candidates.set(0, false);
candidates.set(1, false);
candidates.set(2, n);
for(int i = 2; i < n; i++)
if(candidates.get(i))
for(int j = i + i; j < n; j += i)
if(candidates.get(j) && j % i == 0)
candidates.set(j, false);
return candidates.cardinality();
}
答案 4 :(得分:4)
我们需要一秒钟(2.4GHz)才能使用Sieve of Eratosthenes在Python中生成第一个150000素数:
#!/usr/bin/env python
def iprimes_upto(limit):
"""Generate all prime numbers less then limit.
http://stackoverflow.com/questions/188425/project-euler-problem#193605
"""
is_prime = [True] * limit
for n in range(2, limit):
if is_prime[n]:
yield n
for i in range(n*n, limit, n): # start at ``n`` squared
is_prime[i] = False
def sup_prime(n):
"""Return an integer upper bound for p(n).
p(n) < n (log n + log log n - 1 + 1.8 log log n / log n)
where p(n) is the n-th prime.
http://primes.utm.edu/howmany.shtml#2
"""
from math import ceil, log
assert n >= 13
pn = n * (log(n) + log(log(n)) - 1 + 1.8 * log(log(n)) / log(n))
return int(ceil(pn))
if __name__ == '__main__':
import sys
max_number_of_primes = int(sys.argv[1]) if len(sys.argv) == 2 else 150000
primes = list(iprimes_upto(sup_prime(max_number_of_primes)))
print("Generated %d primes" % len(primes))
n = 100
print("The first %d primes are %s" % (n, primes[:n]))
示例:
$ python primes.py
Generated 153465 primes
The first 100 primes are [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197,
199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379,
383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463,
467, 479, 487, 491, 499, 503, 509, 521, 523, 541]
答案 5 :(得分:2)
在C#中:
class Program
{
static void Main(string[] args)
{
int count = 0;
int max = 150000;
int i = 2;
DateTime start = DateTime.Now;
while (count < max)
{
if (IsPrime(i))
{
count++;
}
i++;
}
DateTime end = DateTime.Now;
Console.WriteLine("Total time taken: " + (end - start).TotalSeconds.ToString() + " seconds");
Console.ReadLine();
}
static bool IsPrime(int n)
{
if (n < 4)
return true;
if (n % 2 == 0)
return false;
int s = (int)Math.Sqrt(n);
for (int i = 2; i <= s; i++)
if (n % i == 0)
return false;
return true;
}
}
输出:
总时间:2.087秒
答案 6 :(得分:1)
请记住,有更好的方法来寻找素数......
我认为你可以采取这种循环:
for (int i = 2; i < top; i++)
然后使你的计数器变量i从3开始并且只尝试对奇数进行修改,因为除了2之外的所有素数都不会被任何偶数整除。
答案 7 :(得分:1)
是否重新声明变量prime
while (count < topPrime) {
boolean prime = true;
循环中的使其效率低下? (我认为这没关系,因为我认为Java会对此进行优化)
boolean prime;
while (count < topPrime) {
prime = true;
答案 8 :(得分:0)
这是我的贡献:
机器:2.4GHz四核i7 w / 8GB RAM @ 1600MHz
编译器:clang++ main.cpp -O3
基准:
Caelans-MacBook-Pro:Primer3 Caelan$ ./a.out 100
Calculated 25 prime numbers up to 100 in 2 clocks (0.000002 seconds).
Caelans-MacBook-Pro:Primer3 Caelan$ ./a.out 1000
Calculated 168 prime numbers up to 1000 in 4 clocks (0.000004 seconds).
Caelans-MacBook-Pro:Primer3 Caelan$ ./a.out 10000
Calculated 1229 prime numbers up to 10000 in 18 clocks (0.000018 seconds).
Caelans-MacBook-Pro:Primer3 Caelan$ ./a.out 100000
Calculated 9592 prime numbers up to 100000 in 237 clocks (0.000237 seconds).
Caelans-MacBook-Pro:Primer3 Caelan$ ./a.out 1000000
Calculated 78498 prime numbers up to 1000000 in 3232 clocks (0.003232 seconds).
Caelans-MacBook-Pro:Primer3 Caelan$ ./a.out 10000000
Calculated 664579 prime numbers up to 10000000 in 51620 clocks (0.051620 seconds).
Caelans-MacBook-Pro:Primer3 Caelan$ ./a.out 100000000
Calculated 5761455 prime numbers up to 100000000 in 918373 clocks (0.918373 seconds).
Caelans-MacBook-Pro:Primer3 Caelan$ ./a.out 1000000000
Calculated 50847534 prime numbers up to 1000000000 in 10978897 clocks (10.978897 seconds).
Caelans-MacBook-Pro:Primer3 Caelan$ ./a.out 4000000000
Calculated 189961812 prime numbers up to 4000000000 in 53709395 clocks (53.709396 seconds).
Caelans-MacBook-Pro:Primer3 Caelan$
来源:
#include <iostream> // cout
#include <cmath> // sqrt
#include <ctime> // clock/CLOCKS_PER_SEC
#include <cstdlib> // malloc/free
using namespace std;
int main(int argc, const char * argv[]) {
if(argc == 1) {
cout << "Please enter a number." << "\n";
return 1;
}
long n = atol(argv[1]);
long i;
long j;
long k;
long c;
long sr;
bool * a = (bool*)malloc((size_t)n * sizeof(bool));
for(i = 2; i < n; i++) {
a[i] = true;
}
clock_t t = clock();
sr = sqrt(n);
for(i = 2; i <= sr; i++) {
if(a[i]) {
for(k = 0, j = 0; j <= n; j = (i * i) + (k * i), k++) {
a[j] = false;
}
}
}
t = clock() - t;
c = 0;
for(i = 2; i < n; i++) {
if(a[i]) {
//cout << i << " ";
c++;
}
}
cout << fixed << "\nCalculated " << c << " prime numbers up to " << n << " in " << t << " clocks (" << ((float)t) / CLOCKS_PER_SEC << " seconds).\n";
free(a);
return 0;
}
这使用了Erastothenes的Sieve方法,我已经根据我的知识尽可能地优化了它。欢迎改进。
答案 9 :(得分:0)
当我开始阅读关于素数的博客文章时,我在我的机器上找到了这个代码。 代码在C#中,我使用的算法来自我的头脑,虽然它可能在维基百科上的某个地方。 ;) 无论如何,它可以在大约300ms内获取前150000个素数。我发现n个第一个奇数的总和等于n ^ 2。同样,在维基百科上可能存在这样的证据。所以知道这一点,我可以写一个算法,它永远不必计算平方根,但我必须逐步计算才能找到素数。所以如果你想要Nth prime,这个算法必须先找到(N-1)前面的素数!就是这样。享受!
//
// Finds the n first prime numbers.
//
//count: Number of prime numbers to find.
//listPrimes: A reference to a list that will contain all n first prime if getLast is set to false.
//getLast: If true, the list will only contain the nth prime number.
//
static ulong GetPrimes(ulong count, ref IList listPrimes, bool getLast)
{
if (count == 0)
return 0;
if (count == 1)
{
if (listPrimes != null)
{
if (!getLast || (count == 1))
listPrimes.Add(2);
}
return count;
}
ulong currentSquare = 1;
ulong nextSquare = 9;
ulong nextSquareIndex = 3;
ulong primesCount = 1;
List dividers = new List();
//Only check for odd numbers starting with 3.
for (ulong curNumber = 3; (curNumber (nextSquareIndex % div) == 0) == false)
dividers.Add(nextSquareIndex);
//Move to next square number
currentSquare = nextSquare;
//Skip the even dividers so take the next odd square number.
nextSquare += (4 * (nextSquareIndex + 1));
nextSquareIndex += 2;
//We may continue as a square number is never a prime number for obvious reasons :).
continue;
}
//Check if there is at least one divider for the current number.
//If so, this is not a prime number.
if (dividers.Exists(div => (curNumber % div) == 0) == false)
{
if (listPrimes != null)
{
//Unless we requested only the last prime, add it to the list of found prime numbers.
if (!getLast || (primesCount + 1 == count))
listPrimes.Add(curNumber);
}
primesCount++;
}
}
return primesCount;
}
答案 10 :(得分:0)
这是我的看法。该程序是用C编写的,在我的笔记本电脑上需要50毫秒(Core 2 Duo,1 GB Ram)。我将所有计算出的素数保存在一个数组中,并尝试将其除以直到数字的sqrt。当然,当我们需要非常大量的素数(尝试使用100000000)时,这不起作用,因为数组变得太大并且给出了seg错误。
/*Calculate the primes till TOTALPRIMES*/
#include <stdio.h>
#define TOTALPRIMES 15000
main(){
int primes[TOTALPRIMES];
int count;
int i, j, cpr;
char isPrime;
primes[0] = 2;
count = 1;
for(i = 3; count < TOTALPRIMES; i+= 2){
isPrime = 1;
//check divisiblity only with previous primes
for(j = 0; j < count; j++){
cpr = primes[j];
if(i % cpr == 0){
isPrime = 0;
break;
}
if(cpr*cpr > i){
break;
}
}
if(isPrime == 1){
//printf("Prime: %d\n", i);
primes[count] = i;
count++;
}
}
printf("Last prime = %d\n", primes[TOTALPRIMES - 1]);
}
$ time ./a.out Last prime = 163841 real 0m0.045s user 0m0.040s sys 0m0.004s
答案 11 :(得分:0)
@Mark Ransom - 不确定这是否是java代码
他们会呻吟可能但是我希望使用范例重写我已经学会信任Java并且他们说要有一些乐趣,请确保他们理解规范没有说任何影响订购的返回结果集,你也可以将结果集点值()转换为一个列表类型给出我在记事本中的一次性,然后再做一个短的差事
===============开始未经测试的代码===============
package demo;
import java.util.List;
import java.util.HashSet;
class Primality
{
int current = 0;
int minValue;
private static final HashSet<Integer> resultSet = new HashSet<Integer>();
final int increment = 2;
// An obvious optimization is to use some already known work as an internal
// constant table of some kind, reducing approaches to boundary conditions.
int[] alreadyKown =
{
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197,
199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379,
383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463,
467, 479, 487, 491, 499, 503, 509, 521, 523, 541
};
// Trivial constructor.
public Primality(int minValue)
{
this.minValue = minValue;
}
List calcPrimes( int startValue )
{
// eliminate several hundred already known primes
// by hardcoding the first few dozen - implemented
// from prior work by J.F. Sebastian
if( startValue > this.minValue )
{
// Duh.
current = Math.abs( start );
do
{
boolean prime = true;
int index = current;
do
{
if(current % index == 0)
{
// here, current cannot be prime so break.
prime = false;
break;
}
while( --index > 0x00000000 );
// Unreachable if not prime
// Here for clarity
if ( prime )
{
resultSet dot add ( or put or whatever it is )
new Integer ( current ) ;
}
}
while( ( current - increment ) > this.minValue );
// Sanity check
if resultSet dot size is greater that zero
{
for ( int anInt : alreadyKown ) { resultSet.add( new Integer ( anInt ) );}
return resultSet;
}
else throw an exception ....
}
===============结束未经测试的代码===============
使用哈希集允许将结果搜索为B树,因此结果可以堆叠起来直到机器开始失败,然后该起点可以用于另一个测试块==一次运行结束用作构造函数值对于另一次运行,坚持已经完成的磁盘工作并允许增量前馈设计。现在烧坏了,循环逻辑需要分析。
补丁(加上添加sqrt):
if(current % 5 == 0 )
if(current % 7 == 0 )
if( ( ( ( current % 12 ) +1 ) == 0) || ( ( ( current % 12 ) -1 ) == 0) ){break;}
if( ( ( ( current % 18 ) +1 ) == 0) || ( ( ( current % 18 ) -1 ) == 0) ){break;}
if( ( ( ( current % 24 ) +1 ) == 0) || ( ( ( current % 24 ) -1 ) == 0) ){break;}
if( ( ( ( current % 36 ) +1 ) == 0) || ( ( ( current % 36 ) -1 ) == 0) ){break;}
if( ( ( ( current % 24 ) +1 ) == 0) || ( ( ( current % 42 ) -1 ) == 0) ){break;}
// and - new work this morning:
package demo;
/**
*
* Buncha stuff deleted for posting .... duh.
*
* @author Author
* @version 0.2.1
*
* Note strings are base36
*/
public final class Alice extends java.util.HashSet<java.lang.String>
{
// prints 14551 so it's 14 ½ seconds to get 40,000 likely primes
// using Java built-in on amd sempron 1.8 ghz / 1600 mhz front side bus 256 k L-2
public static void main(java.lang.String[] args)
{
try
{
final long start=System.currentTimeMillis();
// VM exhibits spurious 16-bit pointer behaviour somewhere after 40,000
final java.lang.Integer upperBound=new java.lang.Integer(40000);
int index = upperBound.intValue();
final java.util.HashSet<java.lang.String>hashSet
= new java.util.HashSet<java.lang.String>(upperBound.intValue());//
// Arbitraily chosen value, based on no idea where to start.
java.math.BigInteger probablePrime
= new java.math.BigInteger(16,java.security.SecureRandom.getInstance("SHA1PRNG"));
do
{
java.math.BigInteger nextProbablePrime = probablePrime.nextProbablePrime();
if(hashSet.add(new java.lang.String(nextProbablePrime.toString(Character.MAX_RADIX))))
{
probablePrime = nextProbablePrime;
if( ( index % 100 ) == 0x00000000 )
{
// System.out.println(nextProbablePrime.toString(Character.MAX_RADIX));//
continue;
}
else
{
continue;
}
}
else
{
throw new StackOverflowError(new String("hashSet.add(string) failed on iteration: "+
Integer.toString(upperBound.intValue() - index)));
}
}
while(--index > 0x00000000);
System.err.println(Long.toString( System.currentTimeMillis() - start));
}
catch(java.security.NoSuchAlgorithmException nsae)
{
// Never happen
return;
}
catch(java.lang.StackOverflowError soe)
{
// Might happen
System.out.println(soe.getMessage());//
return;
}
}
}// end class Alice
答案 12 :(得分:0)
这是我的解决方案......它的速度相当快......它可以在我的机器(Core i7 @ 2.93Ghz)上在3秒内计算1到10,000,000之间的质数。
我的解决方案是C语言,但我不是专业的C程序员。随意批评算法和代码本身:)
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<time.h>
//5MB... allocate a lot of memory at once each time we need it
#define ARRAYMULT 5242880
//list of calculated primes
__int64* primes;
//number of primes calculated
__int64 primeCount;
//the current size of the array
__int64 arraySize;
//Prints all of the calculated primes
void PrintPrimes()
{
__int64 i;
for(i=0; i<primeCount; i++)
{
printf("%d ", primes[i]);
}
}
//Calculates all prime numbers to max
void CalcPrime(__int64 max)
{
register __int64 i;
double square;
primes = (__int64*)malloc(sizeof(__int64) * ARRAYMULT);
primeCount = 0;
arraySize = ARRAYMULT;
//we provide the first prime because its even, and it would be convenient to start
//at an odd number so we can skip evens.
primes[0] = 2;
primeCount++;
for(i=3; i<max; i+=2)
{
int j;
square = sqrt((double)i);
//only test the current candidate against other primes.
for(j=0; j<primeCount; j++)
{
//prime divides evenly into candidate, so we have a non-prime
if(i%primes[j]==0)
break;
else
{
//if we've reached the point where the next prime is > than the square of the
//candidate, the candidate is a prime... so we can add it to the list
if(primes[j] > square)
{
//our array has run out of room, so we need to expand it
if(primeCount >= arraySize)
{
int k;
__int64* newArray = (__int64*)malloc(sizeof(__int64) * (ARRAYMULT + arraySize));
for(k=0; k<primeCount; k++)
{
newArray[k] = primes[k];
}
arraySize += ARRAYMULT;
free(primes);
primes = newArray;
}
//add the prime to the list
primes[primeCount] = i;
primeCount++;
break;
}
}
}
}
}
int main()
{
int max;
time_t t1,t2;
double elapsedTime;
printf("Enter the max number to calculate primes for:\n");
scanf_s("%d",&max);
t1 = time(0);
CalcPrime(max);
t2 = time(0);
elapsedTime = difftime(t2, t1);
printf("%d Primes found.\n", primeCount);
printf("%f seconds elapsed.\n\n",elapsedTime);
//PrintPrimes();
scanf("%d");
return 1;
}
答案 13 :(得分:0)
我敢打赌Miller-Rabin会更快。如果你测试足够多的连续数字就会变得确定,但我甚至都不会打扰。一旦随机算法达到其失败率等于CPU打嗝导致错误结果的可能性的程度,它就不再重要了。
答案 14 :(得分:0)
我决定在F#尝试这个,这是我第一次尝试它。在我的2.2Ghz Core 2 Duo上使用Eratosthenes的Sieve,它在大约200毫秒内运行2..150,000。每次它自己调用它时,它会从列表中消除当前的倍数,因此随着它的变化它会变得更快。这是我在F#中的第一次尝试,所以任何建设性的评论都会受到赞赏。
let max = 150000
let numbers = [2..max]
let rec getPrimes sieve max =
match sieve with
| [] -> sieve
| _ when sqrt(float(max)) < float sieve.[0] -> sieve
| _ -> let prime = sieve.[0]
let filtered = List.filter(fun x -> x % prime <> 0) sieve // Removes the prime as well so the recursion works correctly.
let result = getPrimes filtered max
prime::result // The filter removes the prime so add it back to the primes result.
let timer = System.Diagnostics.Stopwatch()
timer.Start()
let r = getPrimes numbers max
timer.Stop()
printfn "Primes: %A" r
printfn "Elapsed: %d.%d" timer.Elapsed.Seconds timer.Elapsed.Milliseconds
答案 15 :(得分:0)
你应该能够通过仅评估奇数来使内循环快两倍。不确定这是否是有效的Java,我已经习惯了C ++,但我确信它可以适应。
if (current != 2 && current % 2 == 0)
prime = false;
else {
for (int i = 3; i < top; i+=2) {
if (current % i == 0) {
prime = false;
break;
}
}
}
答案 16 :(得分:0)
我对优化的看法,避免过于神秘的伎俩。我使用I-GIVE-TERRIBLE-ADVICE提供的技巧,我知道并忘记了......: - )
public class Primes
{
// Original code
public static void first()
{
int topPrime = 150003;
int current = 2;
int count = 0;
int lastPrime = 2;
long start = System.currentTimeMillis();
while (count < topPrime) {
boolean prime = true;
int top = (int)Math.sqrt(current) + 1;
for (int i = 2; i < top; i++) {
if (current % i == 0) {
prime = false;
break;
}
}
if (prime) {
count++;
lastPrime = current;
// System.out.print(lastPrime + " "); // Checking algo is correct...
}
if (current == 2) {
current++;
} else {
current = current + 2;
}
}
System.out.println("\n-- First");
System.out.println("Last prime = " + lastPrime);
System.out.println("Total time = " + (double)(System.currentTimeMillis() - start) / 1000);
}
// My attempt
public static void second()
{
final int wantedPrimeNb = 150000;
int count = 0;
int currentNumber = 1;
int increment = 4;
int lastPrime = 0;
long start = System.currentTimeMillis();
NEXT_TESTING_NUMBER:
while (count < wantedPrimeNb)
{
currentNumber += increment;
increment = 6 - increment;
if (currentNumber % 2 == 0) // Even number
continue;
if (currentNumber % 3 == 0) // Multiple of three
continue;
int top = (int) Math.sqrt(currentNumber) + 1;
int testingNumber = 5;
int testIncrement = 2;
do
{
if (currentNumber % testingNumber == 0)
{
continue NEXT_TESTING_NUMBER;
}
testingNumber += testIncrement;
testIncrement = 6 - testIncrement;
} while (testingNumber < top);
// If we got there, we have a prime
count++;
lastPrime = currentNumber;
// System.out.print(lastPrime + " "); // Checking algo is correct...
}
System.out.println("\n-- Second");
System.out.println("Last prime = " + lastPrime);
System.out.println("Total time = " + (double) (System.currentTimeMillis() - start) / 1000);
}
public static void main(String[] args)
{
first();
second();
}
}
是的,我使用了标记为“继续”,第一次在Java中尝试它们。
我知道我跳过前几个素数的计算,但它们是众所周知的,没有必要重新计算它们。 :-)如果需要,我可以硬编码输出!此外,它无论如何都没有给出决定性的优势。
结果:
- 首先
最后素数= 2015201
总时间= 4.281
- 第二个
最后素数= 2015201
总时间= 0.953
不错。我想,可能会有所改进,但过多的优化可能会破坏良好的代码。
答案 17 :(得分:0)
C#
Aistina's code的增强功能:
这利用了大于3的所有素数都是6n + 1或6n - 1的事实。
对于每次通过循环,增加1倍的速度增加了4-5%。
class Program
{
static void Main(string[] args)
{
DateTime start = DateTime.Now;
int count = 2; //once 2 and 3
int i = 5;
while (count < 150000)
{
if (IsPrime(i))
{
count++;
}
i += 2;
if (IsPrime(i))
{
count++;
}
i += 4;
}
DateTime end = DateTime.Now;
Console.WriteLine("Total time taken: " + (end - start).TotalSeconds.ToString() + " seconds");
Console.ReadLine();
}
static bool IsPrime(int n)
{
//if (n < 4)
//return true;
//if (n % 2 == 0)
//return false;
int s = (int)Math.Sqrt(n);
for (int i = 2; i <= s; i++)
if (n % i == 0)
return false;
return true;
}
}