我将使用opencv应用warperspective来安装带有varios图像的马赛克,但是,我遇到了一个很大的问题......
当我应用cvWarpPerspective时,生成的图像不会显示在窗口中。 只出现图像的一部分,我需要知道如何在应用warperspective之后发现我的图像的坐标(0,0)。 可以看到,在第一张图像中,如果要与此处显示的第二张图像进行比较,则会切割图像的一部分。
因此,我的问题是:如何在应用warperspective之后发现start的坐标? 我需要帮助来解决这个问题。 如何使用opencv工具解决这个问题? 如何使用opencv解决这个问题?
这是我的代码:
#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
void readme();
/** @function main */
int main( int argc, char** argv )
{
// Load the images
Mat image1= imread( "f.jpg");
Mat image2= imread( "e.jpg" );
Mat gray_image1;
Mat gray_image2;
// Convert to Grayscale
cvtColor( image1, gray_image1, CV_RGB2GRAY );
cvtColor( image2, gray_image2, CV_RGB2GRAY );
imshow("first image",image2);
imshow("second image",image1);
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 100;
SurfFeatureDetector detector( minHessian );
std::vector< KeyPoint > keypoints_object, keypoints_scene;
detector.detect( gray_image1, keypoints_object );
detector.detect( gray_image2, keypoints_scene );
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_object, descriptors_scene;
extractor.compute( gray_image1, keypoints_object, descriptors_object );
extractor.compute( gray_image2, keypoints_scene, descriptors_scene );
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches );
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_object.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );
//-- Use only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_object.rows; i++ )
{ if( matches[i].distance < 3*min_dist )
{ good_matches.push_back( matches[i]); }
}
std::vector< Point2f > obj;
std::vector< Point2f > scene;
for( int i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
// Find the Homography Matrix
Mat H = findHomography( obj, scene, CV_RANSAC);
// Use the Homography Matrix to warp the images
cv::Mat result;
warpPerspective(image1,result,H,cv::Size());
imshow("WARP", result);
cv::Mat half(result,cv::Rect(0,0,image2.cols,image2.rows));
image2.copyTo(half);
Mat key;
//drawKeypoints(image1,keypoints_scene,key,Scalar::all(-1), DrawMatchesFlags::DEFAULT );
//drawMatches(image2, keypoints_scene, image1, keypoints_object, matches, result);
imshow( "Result", result );
imwrite("teste.jpg", result);
waitKey(0);
return 0;
}
/** @function readme */
void readme()
{ std::cout << " Usage: Panorama < img1 > < img2 >" << std::endl; }
在此图像中出现第二张图像。看到
我希望我的图片以这种形式出现:
答案 0 :(得分:1)
以下修改应解决您删除拼接图像黑色部分的问题。
尝试更改此行:
warpPerspective(image1,result,H,cv::Size());
到
warpPerspective(image1,result,H,cv::Size(image1.cols+image2.cols,image1.rows));
这将创建result
矩阵,其行数等于image1
的行数,从而避免创建不需要的行。