我需要一个函数来找到两个线段之间的最短距离。线段由两个端点定义。因此,例如我的一个线段(AB)将由两个点A(x1,y1)和B(x2,y2)定义,而另一个(CD)将由两个点C(x1,y1)定义和D(x2,y2)。
随意用您想要的任何语言编写解决方案,我可以将其翻译成javascript。请记住,我的几何技能非常生疏。我已经看过here,我不知道如何将其转换为函数。非常感谢你的帮助。
答案 0 :(得分:18)
这是我在python中的解决方案。使用3d点,你可以简化为2d。
[编辑1]如果您想将结果限制在线段
,我添加了一个钳位选项[编辑2]作为D.A.指出,因为两条线是平行的并不意味着它们之间不能有距离。所以我编辑了代码来处理这种情况。我还使钳位条件更加通用,因此每个段都可以夹在两侧。
[编辑3]解决了一个错误,jhutar指出当两条线都有条件并且预测结果超出线段时可能会发生这种错误。
import numpy as np
def closestDistanceBetweenLines(a0,a1,b0,b1,clampAll=False,clampA0=False,clampA1=False,clampB0=False,clampB1=False):
''' Given two lines defined by numpy.array pairs (a0,a1,b0,b1)
Return the closest points on each segment and their distance
'''
# If clampAll=True, set all clamps to True
if clampAll:
clampA0=True
clampA1=True
clampB0=True
clampB1=True
# Calculate denomitator
A = a1 - a0
B = b1 - b0
magA = np.linalg.norm(A)
magB = np.linalg.norm(B)
_A = A / magA
_B = B / magB
cross = np.cross(_A, _B);
denom = np.linalg.norm(cross)**2
# If lines are parallel (denom=0) test if lines overlap.
# If they don't overlap then there is a closest point solution.
# If they do overlap, there are infinite closest positions, but there is a closest distance
if not denom:
d0 = np.dot(_A,(b0-a0))
# Overlap only possible with clamping
if clampA0 or clampA1 or clampB0 or clampB1:
d1 = np.dot(_A,(b1-a0))
# Is segment B before A?
if d0 <= 0 >= d1:
if clampA0 and clampB1:
if np.absolute(d0) < np.absolute(d1):
return a0,b0,np.linalg.norm(a0-b0)
return a0,b1,np.linalg.norm(a0-b1)
# Is segment B after A?
elif d0 >= magA <= d1:
if clampA1 and clampB0:
if np.absolute(d0) < np.absolute(d1):
return a1,b0,np.linalg.norm(a1-b0)
return a1,b1,np.linalg.norm(a1-b1)
# Segments overlap, return distance between parallel segments
return None,None,np.linalg.norm(((d0*_A)+a0)-b0)
# Lines criss-cross: Calculate the projected closest points
t = (b0 - a0);
detA = np.linalg.det([t, _B, cross])
detB = np.linalg.det([t, _A, cross])
t0 = detA/denom;
t1 = detB/denom;
pA = a0 + (_A * t0) # Projected closest point on segment A
pB = b0 + (_B * t1) # Projected closest point on segment B
# Clamp projections
if clampA0 or clampA1 or clampB0 or clampB1:
if clampA0 and t0 < 0:
pA = a0
elif clampA1 and t0 > magA:
pA = a1
if clampB0 and t1 < 0:
pB = b0
elif clampB1 and t1 > magB:
pB = b1
# Clamp projection A
if (clampA0 and t0 < 0) or (clampA1 and t0 > magA):
dot = np.dot(_B,(pA-b0))
if clampB0 and dot < 0:
dot = 0
elif clampB1 and dot > magB:
dot = magB
pB = b0 + (_B * dot)
# Clamp projection B
if (clampB0 and t1 < 0) or (clampB1 and t1 > magB):
dot = np.dot(_A,(pB-a0))
if clampA0 and dot < 0:
dot = 0
elif clampA1 and dot > magA:
dot = magA
pA = a0 + (_A * dot)
return pA,pB,np.linalg.norm(pA-pB)
带有图片的测试示例,以帮助可视化:)
a1=np.array([13.43, 21.77, 46.81])
a0=np.array([27.83, 31.74, -26.60])
b0=np.array([77.54, 7.53, 6.22])
b1=np.array([26.99, 12.39, 11.18])
closestDistanceBetweenLines(a0,a1,b0,b1,clampAll=True)
# Result: (15.826771412132246, array([ 19.85163563, 26.21609078, 14.07303667]), array([ 26.99, 12.39, 11.18])) #
closestDistanceBetweenLines(a0,a1,b0,b1,clampAll=False)
# Result: (13.240709703623203, array([ 19.85163563, 26.21609078, 14.07303667]), array([ 18.40058604, 13.21580716, 12.02279907])) #
答案 1 :(得分:9)
取自this example,其中还附带了一个简单的解释,说明为什么它和VB代码一样好(比你需要的更多,所以我在翻译成Python时简化了 - 注意:我已翻译,但没有经过测试,所以打字错误可能会被......):
def segments_distance(x11, y11, x12, y12, x21, y21, x22, y22):
""" distance between two segments in the plane:
one segment is (x11, y11) to (x12, y12)
the other is (x21, y21) to (x22, y22)
"""
if segments_intersect(x11, y11, x12, y12, x21, y21, x22, y22): return 0
# try each of the 4 vertices w/the other segment
distances = []
distances.append(point_segment_distance(x11, y11, x21, y21, x22, y22))
distances.append(point_segment_distance(x12, y12, x21, y21, x22, y22))
distances.append(point_segment_distance(x21, y21, x11, y11, x12, y12))
distances.append(point_segment_distance(x22, y22, x11, y11, x12, y12))
return min(distances)
def segments_intersect(x11, y11, x12, y12, x21, y21, x22, y22):
""" whether two segments in the plane intersect:
one segment is (x11, y11) to (x12, y12)
the other is (x21, y21) to (x22, y22)
"""
dx1 = x12 - x11
dy1 = y12 - y11
dx2 = x22 - x21
dy2 = y22 - y21
delta = dx2 * dy1 - dy2 * dx1
if delta == 0: return False # parallel segments
s = (dx1 * (y21 - y11) + dy1 * (x11 - x21)) / delta
t = (dx2 * (y11 - y21) + dy2 * (x21 - x11)) / (-delta)
return (0 <= s <= 1) and (0 <= t <= 1)
import math
def point_segment_distance(px, py, x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
if dx == dy == 0: # the segment's just a point
return math.hypot(px - x1, py - y1)
# Calculate the t that minimizes the distance.
t = ((px - x1) * dx + (py - y1) * dy) / (dx * dx + dy * dy)
# See if this represents one of the segment's
# end points or a point in the middle.
if t < 0:
dx = px - x1
dy = py - y1
elif t > 1:
dx = px - x2
dy = py - y2
else:
near_x = x1 + t * dx
near_y = y1 + t * dy
dx = px - near_x
dy = py - near_y
return math.hypot(dx, dy)
答案 2 :(得分:7)
这是2维吗?如果是这样,答案就是A点和线段CD,B和CD,C和AB或D和AB之间的距离最短。所以这是一个相当简单的“点和线之间的距离”计算(如果距离都相同,则线条是平行的)。
This site explains the algorithm for distance between a point and a line pretty well.
在3维中稍微有点棘手,因为线条不一定在同一平面上,但这似乎不是这样的情况?
答案 3 :(得分:2)
答案 4 :(得分:1)
为了计算2个2D线段之间的最小距离,您必须使用4个端点中的每一个连续执行从端点到其他线路检查的4个垂直距离。但是,如果您发现在4种情况中的任何一种情况下绘制的垂直线与线段不相交,则必须执行4个额外的端点到端点距离检查以找到最短距离。
是否有更加优雅的解决方案,我不知道。
答案 5 :(得分:1)
请注意,上述解决方案是正确的,假设线段不相交!如果线段相交,则很明显它们的距离应为0.因此,有必要进行一次最终检查:假设A点和CD点之间的距离d(A,CD)是上述4个检查中的最小值。由迪恩。然后从A点沿着AB段走一小步。表示这一点E.如果d(E,CD)&lt; d(A,CD),段必须相交!请注意,这绝不是斯蒂芬解决的问题。
答案 6 :(得分:1)
我的解决方案是Fnord解决方案的翻译。我用javascript和C做。
在Javascript中。您需要添加mathjs。
var closestDistanceBetweenLines = function(a0, a1, b0, b1, clampAll, clampA0, clampA1, clampB0, clampB1){
//Given two lines defined by numpy.array pairs (a0,a1,b0,b1)
//Return distance, the two closest points, and their average
clampA0 = clampA0 || false;
clampA1 = clampA1 || false;
clampB0 = clampB0 || false;
clampB1 = clampB1 || false;
clampAll = clampAll || false;
if(clampAll){
clampA0 = true;
clampA1 = true;
clampB0 = true;
clampB1 = true;
}
//Calculate denomitator
var A = math.subtract(a1, a0);
var B = math.subtract(b1, b0);
var _A = math.divide(A, math.norm(A))
var _B = math.divide(B, math.norm(B))
var cross = math.cross(_A, _B);
var denom = math.pow(math.norm(cross), 2);
//If denominator is 0, lines are parallel: Calculate distance with a projection and evaluate clamp edge cases
if (denom == 0){
var d0 = math.dot(_A, math.subtract(b0, a0));
var d = math.norm(math.subtract(math.add(math.multiply(d0, _A), a0), b0));
//If clamping: the only time we'll get closest points will be when lines don't overlap at all. Find if segments overlap using dot products.
if(clampA0 || clampA1 || clampB0 || clampB1){
var d1 = math.dot(_A, math.subtract(b1, a0));
//Is segment B before A?
if(d0 <= 0 && 0 >= d1){
if(clampA0 == true && clampB1 == true){
if(math.absolute(d0) < math.absolute(d1)){
return [b0, a0, math.norm(math.subtract(b0, a0))];
}
return [b1, a0, math.norm(math.subtract(b1, a0))];
}
}
//Is segment B after A?
else if(d0 >= math.norm(A) && math.norm(A) <= d1){
if(clampA1 == true && clampB0 == true){
if(math.absolute(d0) < math.absolute(d1)){
return [b0, a1, math.norm(math.subtract(b0, a1))];
}
return [b1, a1, math.norm(math.subtract(b1,a1))];
}
}
}
//If clamping is off, or segments overlapped, we have infinite results, just return position.
return [null, null, d];
}
//Lines criss-cross: Calculate the dereminent and return points
var t = math.subtract(b0, a0);
var det0 = math.det([t, _B, cross]);
var det1 = math.det([t, _A, cross]);
var t0 = math.divide(det0, denom);
var t1 = math.divide(det1, denom);
var pA = math.add(a0, math.multiply(_A, t0));
var pB = math.add(b0, math.multiply(_B, t1));
//Clamp results to line segments if needed
if(clampA0 || clampA1 || clampB0 || clampB1){
if(t0 < 0 && clampA0)
pA = a0;
else if(t0 > math.norm(A) && clampA1)
pA = a1;
if(t1 < 0 && clampB0)
pB = b0;
else if(t1 > math.norm(B) && clampB1)
pB = b1;
}
var d = math.norm(math.subtract(pA, pB))
return [pA, pB, d];
}
//example
var a1=[13.43, 21.77, 46.81];
var a0=[27.83, 31.74, -26.60];
var b0=[77.54, 7.53, 6.22];
var b1=[26.99, 12.39, 11.18];
closestDistanceBetweenLines(a0,a1,b0,b1,true);
纯粹的C
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
double determinante3(double* a, double* v1, double* v2){
return a[0] * (v1[1] * v2[2] - v1[2] * v2[1]) + a[1] * (v1[2] * v2[0] - v1[0] * v2[2]) + a[2] * (v1[0] * v2[1] - v1[1] * v2[0]);
}
double* cross3(double* v1, double* v2){
double* v = (double*)malloc(3 * sizeof(double));
v[0] = v1[1] * v2[2] - v1[2] * v2[1];
v[1] = v1[2] * v2[0] - v1[0] * v2[2];
v[2] = v1[0] * v2[1] - v1[1] * v2[0];
return v;
}
double dot3(double* v1, double* v2){
return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
}
double norma3(double* v1){
double soma = 0;
for (int i = 0; i < 3; i++) {
soma += pow(v1[i], 2);
}
return sqrt(soma);
}
double* multiplica3(double* v1, double v){
double* v2 = (double*)malloc(3 * sizeof(double));
for (int i = 0; i < 3; i++) {
v2[i] = v1[i] * v;
}
return v2;
}
double* soma3(double* v1, double* v2, int sinal){
double* v = (double*)malloc(3 * sizeof(double));
for (int i = 0; i < 3; i++) {
v[i] = v1[i] + sinal * v2[i];
}
return v;
}
Result_distance* closestDistanceBetweenLines(double* a0, double* a1, double* b0, double* b1, int clampAll, int clampA0, int clampA1, int clampB0, int clampB1){
double denom, det0, det1, t0, t1, d;
double *A, *B, *_A, *_B, *cross, *t, *pA, *pB;
Result_distance *rd = (Result_distance *)malloc(sizeof(Result_distance));
if (clampAll){
clampA0 = 1;
clampA1 = 1;
clampB0 = 1;
clampB1 = 1;
}
A = soma3(a1, a0, -1);
B = soma3(b1, b0, -1);
_A = multiplica3(A, 1 / norma3(A));
_B = multiplica3(B, 1 / norma3(B));
cross = cross3(_A, _B);
denom = pow(norma3(cross), 2);
if (denom == 0){
double d0 = dot3(_A, soma3(b0, a0, -1));
d = norma3(soma3(soma3(multiplica3(_A, d0), a0, 1), b0, -1));
if (clampA0 || clampA1 || clampB0 || clampB1){
double d1 = dot3(_A, soma3(b1, a0, -1));
if (d0 <= 0 && 0 >= d1){
if (clampA0 && clampB1){
if (abs(d0) < abs(d1)){
rd->pA = b0;
rd->pB = a0;
rd->d = norma3(soma3(b0, a0, -1));
}
else{
rd->pA = b1;
rd->pB = a0;
rd->d = norma3(soma3(b1, a0, -1));
}
}
}
else if (d0 >= norma3(A) && norma3(A) <= d1){
if (clampA1 && clampB0){
if (abs(d0) <abs(d1)){
rd->pA = b0;
rd->pB = a1;
rd->d = norma3(soma3(b0, a1, -1));
}
else{
rd->pA = b1;
rd->pB = a1;
rd->d = norma3(soma3(b1, a1, -1));
}
}
}
}
else{
rd->pA = NULL;
rd->pB = NULL;
rd->d = d;
}
}
else{
t = soma3(b0, a0, -1);
det0 = determinante3(t, _B, cross);
det1 = determinante3(t, _A, cross);
t0 = det0 / denom;
t1 = det1 / denom;
pA = soma3(a0, multiplica3(_A, t0), 1);
pB = soma3(b0, multiplica3(_B, t1), 1);
if (clampA0 || clampA1 || clampB0 || clampB1){
if (t0 < 0 && clampA0)
pA = a0;
else if (t0 > norma3(A) && clampA1)
pA = a1;
if (t1 < 0 && clampB0)
pB = b0;
else if (t1 > norma3(B) && clampB1)
pB = b1;
}
d = norma3(soma3(pA, pB, -1));
rd->pA = pA;
rd->pB = pB;
rd->d = d;
}
free(A);
free(B);
free(cross);
free(t);
return rd;
}
int main(void){
//example
double a1[] = { 13.43, 21.77, 46.81 };
double a0[] = { 27.83, 31.74, -26.60 };
double b0[] = { 77.54, 7.53, 6.22 };
double b1[] = { 26.99, 12.39, 11.18 };
Result_distance* rd = closestDistanceBetweenLines(a0, a1, b0, b1, 1, 0, 0, 0, 0);
printf("pA = [%f, %f, %f]\n", rd->pA[0], rd->pA[1], rd->pA[2]);
printf("pB = [%f, %f, %f]\n", rd->pB[0], rd->pB[1], rd->pB[2]);
printf("d = %f\n", rd->d);
return 0;
}
答案 7 :(得分:1)
这是我的解决方案。它是用 Lua 编程的。它非常简洁,所以也许会受到赞赏。请确保线段的长度不为 0。
local eta = 1e-6
local function nearestPointsOnLineSegments(a0, a1, b0, b1)
local r = b0 - a0
local u = a1 - a0
local v = b1 - b0
local ru = r:Dot(u)
local rv = r:Dot(v)
local uu = u:Dot(u)
local uv = u:Dot(v)
local vv = v:Dot(v)
local det = uu*vv - uv*uv
local s, t
if det < eta*uu*vv then
s = math.clamp(ru/uu, 0, 1)
t = 0
else
s = math.clamp((ru*vv - rv*uv)/det, 0, 1)
t = math.clamp((ru*uv - rv*uu)/det, 0, 1)
end
local S = math.clamp((t*uv + ru)/uu, 0, 1)
local T = math.clamp((s*uv - rv)/vv, 0, 1)
local A = a + S*u
local B = b + T*v
return A, B, (B - A):Length()
end
答案 8 :(得分:0)
这个解决方案实质上是来自Alex Martelli的解决方案,但是我添加了一个Point和一个LineSegment类来简化阅读。我还调整了格式并添加了一些测试。
线段交叉错误,但对于线段距离的计算似乎无关紧要。如果您对正确的线段交叉点感兴趣,请查看此处:How do you detect whether or not two line segments intersect?
#!/usr/bin/env python
"""Calculate the distance between line segments."""
import math
class Point(object):
"""A two dimensional point."""
def __init__(self, x, y):
self.x = float(x)
self.y = float(y)
class LineSegment(object):
"""A line segment in a two dimensional space."""
def __init__(self, p1, p2):
assert isinstance(p1, Point), \
"p1 is not of type Point, but of %r" % type(p1)
assert isinstance(p2, Point), \
"p2 is not of type Point, but of %r" % type(p2)
self.p1 = p1
self.p2 = p2
def segments_distance(segment1, segment2):
"""Calculate the distance between two line segments in the plane.
>>> a = LineSegment(Point(1,0), Point(2,0))
>>> b = LineSegment(Point(0,1), Point(0,2))
>>> "%0.2f" % segments_distance(a, b)
'1.41'
>>> c = LineSegment(Point(0,0), Point(5,5))
>>> d = LineSegment(Point(2,2), Point(4,4))
>>> e = LineSegment(Point(2,2), Point(7,7))
>>> "%0.2f" % segments_distance(c, d)
'0.00'
>>> "%0.2f" % segments_distance(c, e)
'0.00'
"""
if segments_intersect(segment1, segment2):
return 0
# try each of the 4 vertices w/the other segment
distances = []
distances.append(point_segment_distance(segment1.p1, segment2))
distances.append(point_segment_distance(segment1.p2, segment2))
distances.append(point_segment_distance(segment2.p1, segment1))
distances.append(point_segment_distance(segment2.p2, segment1))
return min(distances)
def segments_intersect(segment1, segment2):
"""Check if two line segments in the plane intersect.
>>> segments_intersect(LineSegment(Point(0,0), Point(1,0)), \
LineSegment(Point(0,0), Point(1,0)))
True
"""
dx1 = segment1.p2.x - segment1.p1.x
dy1 = segment1.p2.y - segment1.p2.y
dx2 = segment2.p2.x - segment2.p1.x
dy2 = segment2.p2.y - segment2.p1.y
delta = dx2 * dy1 - dy2 * dx1
if delta == 0: # parallel segments
# TODO: Could be (partially) identical!
return False
s = (dx1 * (segment2.p1.y - segment1.p1.y) +
dy1 * (segment1.p1.x - segment2.p1.x)) / delta
t = (dx2 * (segment1.p1.y - segment2.p1.y) +
dy2 * (segment2.p1.x - segment1.p1.x)) / (-delta)
return (0 <= s <= 1) and (0 <= t <= 1)
def point_segment_distance(point, segment):
"""
>>> a = LineSegment(Point(1,0), Point(2,0))
>>> b = LineSegment(Point(2,0), Point(0,2))
>>> point_segment_distance(Point(0,0), a)
1.0
>>> "%0.2f" % point_segment_distance(Point(0,0), b)
'1.41'
"""
assert isinstance(point, Point), \
"point is not of type Point, but of %r" % type(point)
dx = segment.p2.x - segment.p1.x
dy = segment.p2.y - segment.p1.y
if dx == dy == 0: # the segment's just a point
return math.hypot(point.x - segment.p1.x, point.y - segment.p1.y)
if dx == 0:
if (point.y <= segment.p1.y or point.y <= segment.p2.y) and \
(point.y >= segment.p2.y or point.y >= segment.p2.y):
return abs(point.x - segment.p1.x)
if dy == 0:
if (point.x <= segment.p1.x or point.x <= segment.p2.x) and \
(point.x >= segment.p2.x or point.x >= segment.p2.x):
return abs(point.y - segment.p1.y)
# Calculate the t that minimizes the distance.
t = ((point.x - segment.p1.x) * dx + (point.y - segment.p1.y) * dy) / \
(dx * dx + dy * dy)
# See if this represents one of the segment's
# end points or a point in the middle.
if t < 0:
dx = point.x - segment.p1.x
dy = point.y - segment.p1.y
elif t > 1:
dx = point.x - segment.p2.x
dy = point.y - segment.p2.y
else:
near_x = segment.p1.x + t * dx
near_y = segment.p1.y + t * dy
dx = point.x - near_x
dy = point.y - near_y
return math.hypot(dx, dy)
if __name__ == '__main__':
import doctest
doctest.testmod()
答案 9 :(得分:0)
我根据上述Pratik Deoghare的回答做了一个Swift端口。 Pratik引用了Dan Sunday出色的文章和代码示例,网址为:http://geomalgorithms.com/a07-_distance.html
以下函数计算两条线或两条线段之间的最小距离,并且是Dan Sunday的C ++示例的直接端口。
LASwift线性代数软件包用于进行矩阵和矢量计算。
//
// This is a Swift port of the C++ code here
// http://geomalgorithms.com/a07-_distance.html
//
// Copyright 2001 softSurfer, 2012 Dan Sunday
// This code may be freely used, distributed and modified for any purpose
// providing that this copyright notice is included with it.
// SoftSurfer makes no warranty for this code, and cannot be held
// liable for any real or imagined damage resulting from its use.
// Users of this code must verify correctness for their application.
//
//
// LASwift is a "Linear Algebra library for Swift language" by Alexander Taraymovich
// https://github.com/AlexanderTar/LASwift
// LASwift is available under the BSD-3-Clause license.
//
// I've modified the lineToLineDistance and segmentToSegmentDistance functions
// to also return the points on each line/segment where the distance is shortest.
//
import LASwift
import Foundation
func norm(_ v: Vector) -> Double {
return sqrt(dot(v,v)) // norm = length of vector
}
func d(_ u: Vector, _ v: Vector) -> Double {
return norm(u-v) // distance = norm of difference
}
let SMALL_NUM = 0.000000000000000001 // anything that avoids division overflow
typealias Point = Vector
struct Line {
let P0: Point
let P1: Point
}
struct Segment {
let P0: Point
let P1: Point
}
// lineToLineDistance(): get the 3D minimum distance between 2 lines
// Input: two 3D lines L1 and L2
// Return: the shortest distance between L1 and L2
func lineToLineDistance(L1: Line, L2: Line) -> (P1: Point, P2: Point, D: Double) {
let u = L1.P1 - L1.P0
let v = L2.P1 - L2.P0
let w = L1.P0 - L2.P0
let a = dot(u,u) // always >= 0
let b = dot(u,v)
let c = dot(v,v) // always >= 0
let d = dot(u,w)
let e = dot(v,w)
let D = a*c - b*b // always >= 0
var sc, tc: Double
// compute the line parameters of the two closest points
if D < SMALL_NUM { // the lines are almost parallel
sc = 0.0
tc = b>c ? d/b : e/c // use the largest denominator
}
else {
sc = (b*e - c*d) / D
tc = (a*e - b*d) / D
}
// get the difference of the two closest points
let dP = w + (sc .* u) - (tc .* v) // = L1(sc) - L2(tc)
let Psc = L1.P0 + sc .* u
let Qtc = L2.P0 + tc .* v
let dP2 = Psc - Qtc
assert(dP == dP2)
return (P1: Psc, P2: Qtc, D: norm(dP)) // return the closest distance
}
// segmentToSegmentDistance(): get the 3D minimum distance between 2 segments
// Input: two 3D line segments S1 and S2
// Return: the shortest distance between S1 and S2
func segmentToSegmentDistance(S1: Segment, S2: Segment) -> (P1: Point, P2: Point, D: Double) {
let u = S1.P1 - S1.P0
let v = S2.P1 - S2.P0
let w = S1.P0 - S2.P0
let a = dot(u,u) // always >= 0
let b = dot(u,v)
let c = dot(v,v) // always >= 0
let d = dot(u,w)
let e = dot(v,w)
let D = a*c - b*b // always >= 0
let sc: Double
var sN: Double
var sD = D // sc = sN / sD, default sD = D >= 0
let tc: Double
var tN: Double
var tD = D // tc = tN / tD, default tD = D >= 0
// compute the line parameters of the two closest points
if (D < SMALL_NUM) { // the lines are almost parallel
sN = 0.0 // force using point P0 on segment S1
sD = 1.0 // to prevent possible division by 0.0 later
tN = e
tD = c
}
else { // get the closest points on the infinite lines
sN = (b*e - c*d)
tN = (a*e - b*d)
if (sN < 0.0) { // sc < 0 => the s=0 edge is visible
sN = 0.0
tN = e
tD = c
}
else if (sN > sD) { // sc > 1 => the s=1 edge is visible
sN = sD
tN = e + b
tD = c
}
}
if (tN < 0.0) { // tc < 0 => the t=0 edge is visible
tN = 0.0
// recompute sc for this edge
if (-d < 0.0) {
sN = 0.0
}
else if (-d > a) {
sN = sD
}
else {
sN = -d
sD = a
}
}
else if (tN > tD) { // tc > 1 => the t=1 edge is visible
tN = tD;
// recompute sc for this edge
if ((-d + b) < 0.0) {
sN = 0
}
else if ((-d + b) > a) {
sN = sD
}
else {
sN = (-d + b)
sD = a
}
}
// finally do the division to get sc and tc
sc = (abs(sN) < SMALL_NUM ? 0.0 : sN / sD)
tc = (abs(tN) < SMALL_NUM ? 0.0 : tN / tD)
// get the difference of the two closest points
let dP = w + (sc .* u) - (tc .* v) // = S1(sc) - S2(tc)
let Psc = S1.P0 + sc .* u
let Qtc = S2.P0 + tc .* v
let dP2 = Psc - Qtc
assert(dP == dP2)
return (P1: Psc, P2: Qtc, D: norm(dP)) // return the closest distance
}
答案 10 :(得分:0)
这是我遵循的基本代码,用于在3d平面中的任意两个平面或任意两个点之间的最短距离,它可以很好地工作,可以针对给定的输入更改指标
def dot(c1,c2):
return c1[0]* c2[0] + c1[1] * c2[1] + c1[2] * c2[2]
def norm(c1):
return math.sqrt(dot(c1, c1))
def getShortestDistance(x1,x2,x3,x4,y1,y2,y3,y4,z1,z2,z3,z4):
print(x1,x2,x3,x4,y1,y2,y3,y4,z1,z2,z3,z4)
EPS = 0.00000001
delta21 = [1,2,3]
delta21[0] = x2 - x1
delta21[1] = y2 - y1
delta21[2] = z2 - z1
delta41 = [1,2,3]
delta41[0] = x4 - x3
delta41[1] = y4 - y3
delta41[2] = z4 - z3
delta13 = [1,2,3]
delta13[0] = x1 - x3
delta13[1] = y1 - y3
delta13[2] = z1 - z3
a = dot(delta21, delta21)
b = dot(delta21, delta41)
c = dot(delta41, delta41)
d = dot(delta21, delta13)
e = dot(delta41, delta13)
D = a * c - b * b
sc = D
sN = D
sD = D
tc = D
tN = D
tD = D
if D < EPS:
sN = 0.0
sD = 1.0
tN = e
tD = c
else:
sN = (b * e - c * d)
tN = (a * e - b * d)
if sN < 0.0:
sN = 0.0
tN = e
tD = c
elif sN > sD:
sN = sD
tN = e + b
tD = c
if tN < 0.0:
tN = 0.0
if -d < 0.0:
sN = 0.0
elif -d > a:
sN = sD
else:
sN = -d
sD = a
elif tN > tD:
tN = tD
if ((-d + b) < 0.0):
sN = 0
elif ((-d + b) > a):
sN = sD
else:
sN = (-d + b)
sD = a
if (abs(sN) < EPS):
sc = 0.0
else:
sc = sN / sD
if (abs(tN) < EPS):
tc = 0.0
else:
tc = tN / tD
dP = [1,2,3]
dP[0] = delta13[0] + (sc * delta21[0]) - (tc * delta41[0])
dP[1] = delta13[1] + (sc * delta21[1]) - (tc * delta41[1])
dP[2] = delta13[2] + (sc * delta21[2]) - (tc * delta41[2])
return math.sqrt(dot(dP, dP))
答案 11 :(得分:0)
这是一个 Java 解决方案(通过点检查完成的简单方法,因此可能效率不高):
public static double getDistanceBetweenLineSegments(
PointDouble line1Start, PointDouble line1End,
PointDouble line2Start, PointDouble line2End) {
double result = 0;
// If they don't intersect, then work out the distance
if (!isLineIntersectingLine(line1Start, line1End, line2Start, line2End)) {
double p1 = getDistanceBetweenPointAndLine(line1Start, line2Start, line2End);
double p2 = getDistanceBetweenPointAndLine(line1End, line2Start, line2End);
double p3 = getDistanceBetweenPointAndLine(line2Start, line1Start, line1End);
double p4 = getDistanceBetweenPointAndLine(line2End, line1Start, line1End);
result = MathSafe.min(p1, MathSafe.min(p2, MathSafe.min(p3, p4)));
}
return result;
}
以及您需要的所有其他代码:
public class PointDouble {
private double x;
private double y;
public PointDouble(double x, double y) {
this.x = x;
this.y = y;
}
public double getX() {
return x;
}
public double getY() {
return y;
}
}
private static int relativeCCW(
double x1, double y1,
double x2, double y2,
double px, double py) {
x2 -= x1;
y2 -= y1;
px -= x1;
py -= y1;
double ccw = px * y2 - py * x2;
if (ccw == 0.0) {
ccw = px * x2 + py * y2;
if (ccw > 0.0) {
px -= x2;
py -= y2;
ccw = px * x2 + py * y2;
if (ccw < 0.0) {
ccw = 0.0;
}
}
}
return (ccw < 0.0) ? -1 : ((ccw > 0.0) ? 1 : 0);
}
public static boolean isLineIntersectingLine(
PointDouble line1Start, PointDouble line1End,
PointDouble line2Start, PointDouble line2End) {
return (
(relativeCCW(line1Start.getX(), line1Start.getY(), line1End.getX(), line1End.getY(), line2Start.getX(), line2Start.getY()) *
relativeCCW(line1Start.getX(), line1Start.getY(), line1End.getX(), line1End.getY(), line2End.getX(), line2End.getY()) <= 0)
&&
(relativeCCW(line2Start.getX(), line2Start.getY(), line2End.getX(), line2End.getY(), line1Start.getX(), line1Start.getY()) *
relativeCCW(line2Start.getX(), line2Start.getY(), line2End.getX(), line2End.getY(), line1End.getX(), line1End.getY()) <= 0));
}
public static double getDistanceBetweenPointAndLine(PointDouble pt, PointDouble linePt1, PointDouble linePt2) {
double lineX = linePt2.getX() - linePt1.getX();
double lineY = linePt2.getY() - linePt1.getY();
double dot = (pt.getX() - linePt1.getX()) * lineX + (pt.getY() - linePt1.getY()) * lineY;
double len_sq = lineX * lineX + lineY * lineY;
double param = -1;
double xx;
double yy;
if (len_sq != 0) {
param = dot / len_sq;
}
if (param < 0) {
xx = linePt1.getX();
yy = linePt1.getY();
}
else if (param > 1) {
xx = linePt2.getX();
yy = linePt2.getY();
}
else {
xx = linePt1.getX() + param * lineX;
yy = linePt1.getY() + param * lineY;
}
return MathSafe.hypot(pt.getX() - xx, pt.getY() - yy);
}