我有兴趣找到一个场景的视差图。首先,我使用以下代码进行了立体声校准(我自己写了一些来自谷歌的帮助,因为没有找到任何有用的教程,用于在OpenCV 2.4.10的python中编写)。
我在两台相机上同时拍摄了棋盘图像并将其保存为左* .jpg和右* .jpg。
import numpy as np
import cv2
import glob
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6*9,3), np.float32)
objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2)
# Arrays to store object points and image points from all the images.
objpointsL = [] # 3d point in real world space
imgpointsL = [] # 2d points in image plane.
objpointsR = []
imgpointsR = []
images = glob.glob('left*.jpg')
for fname in images:
img = cv2.imread(fname)
grayL = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Find the chess board corners
ret, cornersL = cv2.findChessboardCorners(grayL, (9,6),None)
# If found, add object points, image points (after refining them)
if ret == True:
objpointsL.append(objp)
cv2.cornerSubPix(grayL,cornersL,(11,11),(-1,-1),criteria)
imgpointsL.append(cornersL)
images = glob.glob('right*.jpg')
for fname in images:
img = cv2.imread(fname)
grayR = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Find the chess board corners
ret, cornersR = cv2.findChessboardCorners(grayR, (9,6),None)
# If found, add object points, image points (after refining them)
if ret == True:
objpointsR.append(objp)
cv2.cornerSubPix(grayR,cornersR,(11,11),(-1,-1),criteria)
imgpointsR.append(cornersR)
retval,cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, R, T, E, F = cv2.stereoCalibrate(objpointsL, imgpointsL, imgpointsR, (320,240))
如何纠正图像?在继续查找视差图之前,我还应该采取哪些其他步骤?我在某处读到,在计算视差图时,两帧上检测到的特征应位于同一水平线上。请帮帮我。任何帮助将非常感激。
答案 0 :(得分:3)
您需要cameraMatrix1
,distCoeffs1
,cameraMatrix2
,distCoeffs2
和" newCameraMatrix" cv2.undistort()
你可以获得" newCameraMatrix"使用cv2.getOptimalNewCameraMatrix()
所以在你脚本的其余部分粘贴这个:
# Assuming you have left01.jpg and right01.jpg that you want to rectify
lFrame = cv2.imread('left01.jpg')
rFrame = cv2.imread('right01.jpg')
w, h = lFrame.shape[:2] # both frames should be of same shape
frames = [lFrame, rFrame]
# Params from camera calibration
camMats = [cameraMatrix1, cameraMatrix2]
distCoeffs = [distCoeffs1, distCoeffs2]
camSources = [0,1]
for src in camSources:
distCoeffs[src][0][4] = 0.0 # use only the first 2 values in distCoeffs
# The rectification process
newCams = [0,0]
roi = [0,0]
for src in camSources:
newCams[src], roi[src] = cv2.getOptimalNewCameraMatrix(cameraMatrix = camMats[src],
distCoeffs = distCoeffs[src],
imageSize = (w,h),
alpha = 0)
rectFrames = [0,0]
for src in camSources:
rectFrames[src] = cv2.undistort(frames[src],
camMats[src],
distCoeffs[src])
# See the results
view = np.hstack([frames[0], frames[1]])
rectView = np.hstack([rectFrames[0], rectFrames[1]])
cv2.imshow('view', view)
cv2.imshow('rectView', rectView)
# Wait indefinitely for any keypress
cv2.waitKey(0)
希望能让你走向可能正在计算的下一个事物"视差图" ;)
<强>参考:强>
http://www.janeriksolem.net/2014/05/how-to-calibrate-camera-with-opencv-and.html
答案 1 :(得分:1)
尝试以下代码,我已经能够解决该错误:
retVal, cm1, dc1, cm2, dc2, r, t, e, f = cv2.stereoCalibrate(objpointsL, imgpointsL, imgpointsR, (320, 240), None, None,None,None)
答案 2 :(得分:-1)
首先,使用opencv校准应用程序或matlab calibration toolbox计算相机参数。使用参数,您可以纠正您的图像。
完成后,请参考opencv代码库中的python示例(samples / python / stereo_match.py)来计算视差图。