我正在尝试用Java中的Weka进行预测,使用朴素贝叶斯分类器,使用以下代码:
public class Run {
public static void main(String[] args) throws Exception {
ConverterUtils.DataSource source1 = new ConverterUtils.DataSource("./data/train.arff");
Instances train = source1.getDataSet();
// setting class attribute if the data format does not provide this information
// For example, the XRFF format saves the class attribute information as well
if (train.classIndex() == -1)
train.setClassIndex(train.numAttributes() - 1);
ConverterUtils.DataSource source2 = new ConverterUtils.DataSource("./data/test.arff");
Instances test = source2.getDataSet();
// setting class attribute if the data format does not provide this information
// For example, the XRFF format saves the class attribute information as well
if (test.classIndex() == -1)
test.setClassIndex(train.numAttributes() - 1);
// model
NaiveBayes naiveBayes = new NaiveBayes();
naiveBayes.buildClassifier(train);
Evaluation evaluation = new Evaluation(train);
evaluation.evaluateModel(naiveBayes, test);
}
}
@relation weather
@attribute outlook {sunny, overcast, rainy}
@attribute temperature real
@attribute humidity real
@attribute windy {TRUE, FALSE}
@attribute play {yes, no}
@data
sunny,85,85,FALSE,no
sunny,80,90,TRUE,no
...
@relation weather
@attribute outlook {sunny, overcast, rainy}
@attribute temperature real
@attribute humidity real
@attribute windy {TRUE, FALSE}
@attribute play {yes, no}
@data
sunny,85,85,FALSE,?
在预测输出的GUI
中
=== Predictions on test split ===
inst#, actual, predicted, error, probability distribution
1 ? 2:no + 0.145 *0.855
如何使用Java获得此输出?我需要使用哪种方法才能获得此功能?
答案 0 :(得分:2)
public class Run {
public static void main(String[] args) throws Exception {
ConverterUtils.DataSource source1 = new ConverterUtils.DataSource("./data/train.arff");
Instances train = source1.getDataSet();
// setting class attribute if the data format does not provide this information
// For example, the XRFF format saves the class attribute information as well
if (train.classIndex() == -1)
train.setClassIndex(train.numAttributes() - 1);
ConverterUtils.DataSource source2 = new ConverterUtils.DataSource("./data/test.arff");
Instances test = source2.getDataSet();
// setting class attribute if the data format does not provide this information
// For example, the XRFF format saves the class attribute information as well
if (test.classIndex() == -1)
test.setClassIndex(train.numAttributes() - 1);
// model
NaiveBayes naiveBayes = new NaiveBayes();
naiveBayes.buildClassifier(train);
// this does the trick
double label = naiveBayes.classifyInstance(test.instance(0));
test.instance(0).setClassValue(label);
System.out.println(test.instance(0).stringValue(4));
}
}