我试图使用evaluateModel函数获取测试集的预测,但是evaluation.evaluateModel(classifier, newTest,output)
会引发异常。
线程“main”中的异常weka.core.WekaException:没有数据集 结构提供!
import weka.classifiers.Evaluation;
import weka.core.Attribute;
import weka.core.Instances;
import weka.core.converters.ConverterUtils.DataSource;
import weka.classifiers.Evaluation;
import weka.core.converters.ConverterUtils.DataSource;
import weka.attributeSelection.CfsSubsetEval;
import weka.attributeSelection.ASSearch;
import weka.attributeSelection.BestFirst;
import weka.classifiers.functions.LinearRegression;
import weka.classifiers.meta.AttributeSelectedClassifier;
import weka.filters.supervised.attribute.AttributeSelection;
import weka.classifiers.evaluation.output.prediction.CSV;
public void evaluateTest() throws Exception
{
DataSource train = new DataSource(trainingData.toString());
Instances traininstances = train.getDataSet();
Attribute attr=traininstances.attribute("regressionLabel");
int trainindex=attr.index();
traininstances.setClassIndex(trainindex);
DataSource test = new DataSource(testData.toString());
Instances testinstances = test.getDataSet();
Attribute testattr=testinstances.attribute(regressionLabel);
int testindex=testattr.index();
testinstances.setClassIndex(testindex);
AttributeSelection filter = new AttributeSelection();
weka.classifiers.AbstractClassifier classifier ;
filter.setSearch(this.search);
filter.setEvaluator(this.eval);
filter.setInputFormat(traininstances); // initializing the filter once with training set
Instances newTrain = AttributeSelection.useFilter( traininstances, filter); // configures the Filter based on train instances and returns filtered instances
Instances newTest = AttributeSelection.useFilter(testinstances, filter);
classifier= new LinearRegression();
classifier.buildClassifier(newTrain);
StringBuffer buffer = new StringBuffer();
CSV output = new CSV();
output.setBuffer(buffer);
output.setOutputFile(predictFile);
Evaluation evaluation = new Evaluation(newTrain);
evaluation.evaluateModel(classifier, newTest,output);
}
同样适用于evaluation.crossValidateModel
。