仅使用CUDA计算奇异值

时间:2015-01-23 10:13:03

标签: cuda svd cusolver

我尝试使用CUDA 7.0的新cusolverDnSgesvd例程来计算奇异值。完整代码报告如下:

#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include <stdio.h>

#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include <cusolverDn.h>
#include <cuda_runtime_api.h>

/***********************/
/* CUDA ERROR CHECKING */
/***********************/
void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
   if (code != cudaSuccess)
   {
      fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
      if (abort) { exit(code); }
   }
}
void gpuErrchk(cudaError_t ans) { gpuAssert((ans), __FILE__, __LINE__); }

/********/
/* MAIN */
/********/
int main(){

    int M = 10;
    int N = 10;

    // --- Setting the host matrix
    float *h_A = (float *)malloc(M * N * sizeof(float));
    for(unsigned int i = 0; i < M; i++){
        for(unsigned int j = 0; j < N; j++){
            h_A[j*M + i] = (i + j) * (i + j);
        }
    }

    // --- Setting the device matrix and moving the host matrix to the device
    float *d_A;         gpuErrchk(cudaMalloc(&d_A,      M * N * sizeof(float)));
    gpuErrchk(cudaMemcpy(d_A, h_A, M * N * sizeof(float), cudaMemcpyHostToDevice));

    // --- host side SVD results space
    float *h_U = (float *)malloc(M * M * sizeof(float));
    float *h_V = (float *)malloc(N * N * sizeof(float));
    float *h_S = (float *)malloc(N *     sizeof(float));

    // --- device side SVD workspace and matrices
    int work_size = 0;

    int *devInfo;       gpuErrchk(cudaMalloc(&devInfo,          sizeof(int)));
    float *d_U;         gpuErrchk(cudaMalloc(&d_U,      M * M * sizeof(float)));
    float *d_V;         gpuErrchk(cudaMalloc(&d_V,      N * N * sizeof(float)));
    float *d_S;         gpuErrchk(cudaMalloc(&d_S,      N *     sizeof(float)));

    cusolverStatus_t stat;

    // --- CUDA solver initialization
    cusolverDnHandle_t solver_handle;
    cusolverDnCreate(&solver_handle);

    stat = cusolverDnSgesvd_bufferSize(solver_handle, M, N, &work_size);
    if(stat != CUSOLVER_STATUS_SUCCESS ) std::cout << "Initialization of cuSolver failed. \N";

    float *work;    gpuErrchk(cudaMalloc(&work, work_size * sizeof(float)));
    //float *rwork; gpuErrchk(cudaMalloc(&rwork, work_size * sizeof(float)));

    // --- CUDA SVD execution
    //stat = cusolverDnSgesvd(solver_handle, 'A', 'A', M, N, d_A, M, d_S, d_U, M, d_V, N, work, work_size, NULL, devInfo);
    stat = cusolverDnSgesvd(solver_handle, 'N', 'N', M, N, d_A, M, d_S, d_U, M, d_V, N, work, work_size, NULL, devInfo);
    cudaDeviceSynchronize();

    int devInfo_h = 0;
    gpuErrchk(cudaMemcpy(&devInfo_h, devInfo, sizeof(int), cudaMemcpyDeviceToHost));
    std::cout << "devInfo = " << devInfo_h << "\n";

    switch(stat){
        case CUSOLVER_STATUS_SUCCESS:           std::cout << "SVD computation success\n";                       break;
        case CUSOLVER_STATUS_NOT_INITIALIZED:   std::cout << "Library cuSolver not initialized correctly\n";    break;
        case CUSOLVER_STATUS_INVALID_VALUE:     std::cout << "Invalid parameters passed\n";                     break;
        case CUSOLVER_STATUS_INTERNAL_ERROR:    std::cout << "Internal operation failed\n";                     break;
    }

    if (devInfo_h == 0 && stat == CUSOLVER_STATUS_SUCCESS) std::cout    << "SVD successful\n\n";

    // --- Moving the results from device to host
    gpuErrchk(cudaMemcpy(h_S, d_S, N * sizeof(float), cudaMemcpyDeviceToHost));

    for(int i = 0; i < N; i++) std::cout << "d_S["<<i<<"] = " << h_S[i] << std::endl;

    cusolverDnDestroy(solver_handle);

    return 0;

}

如果我要求计算完整的SVD(带有jobu = 'A'jobvt = 'A'的注释行),一切正常。如果我只要求计算奇异值(与jobu = 'N'jobvt = 'N'对齐),cusolverDnSgesvd会返回

CUSOLVER_STATUS_INVALID_VALUE

请注意,在这种情况下devInfo = 0,我无法找到无效参数。

请注意,文档PDF缺少有关rwork参数的信息,因此我将其作为虚拟参数处理。

2 个答案:

答案 0 :(得分:1)

目前,cuSolver gesvd功能仅支持jobu = 'A'jobvt = 'A'

因此,您需要指定其他组合时的错误。来自documentation

  

备注2:gesvd仅支持jobu ='A'和jobvt ='A'并返回矩阵U和VH

答案 1 :(得分:1)

使用cusolver<T>nSgesvd

正如lebedov所述,从CUDA 8.0开始,现在只能通过cusolverDnSgesvd来计算奇异值。我在下面报告了稍微修改过的代码版本,其中两次调用cusolverDnSgesvd,其中一次只执行奇异值计算

cusolverDnSgesvd(solver_handle, 'N', 'N', M, N, d_A, M, d_S, NULL, M, NULL, N, work, work_size, NULL, devInfo)

和一个执行完整SVD计算

cusolverDnSgesvd(solver_handle, 'A', 'A', M, N, d_A, M, d_S, d_U, M, d_V, N, work, work_size, NULL, devInfo)

正如您已经注意到的那样,完整SVD案例的两个'A'字段仅在奇异值的情况下更改为'N'。请注意,仅在奇异值的情况下,不需要为奇异向量矩阵UV存储空间。实际上,传递了NULL指针。

奇异值计算仅比完整的SVD计算更快。在GTX 960上,对于1000x1000矩阵,时间如下:

Singular values only: 559 ms
Full SVD: 2239 ms

以下是完整代码:

#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include <stdio.h>

#include<iostream>
#include<stdlib.h>
#include<stdio.h>

#include <cusolverDn.h>
#include <cuda_runtime_api.h>

#include "Utilities.cuh"
#include "TimingGPU.cuh"

/********/
/* MAIN */
/********/
int main(){

    int M = 1000;
    int N = 1000;

    TimingGPU timerGPU;
    float     elapsedTime;

    // --- Setting the host matrix
    float *h_A = (float *)malloc(M * N * sizeof(float));
    for (unsigned int i = 0; i < M; i++){
        for (unsigned int j = 0; j < N; j++){
            h_A[j*M + i] = (i + j) * (i + j);
        }
    }

    // --- Setting the device matrix and moving the host matrix to the device
    float *d_A;         gpuErrchk(cudaMalloc(&d_A, M * N * sizeof(float)));
    gpuErrchk(cudaMemcpy(d_A, h_A, M * N * sizeof(float), cudaMemcpyHostToDevice));

    // --- host side SVD results space
    float *h_U = (float *)malloc(M * M * sizeof(float));
    float *h_V = (float *)malloc(N * N * sizeof(float));
    float *h_S = (float *)malloc(N *     sizeof(float));

    // --- device side SVD workspace and matrices
    int work_size = 0;

    int *devInfo;       gpuErrchk(cudaMalloc(&devInfo, sizeof(int)));
    float *d_U;         gpuErrchk(cudaMalloc(&d_U, M * M * sizeof(float)));
    float *d_V;         gpuErrchk(cudaMalloc(&d_V, N * N * sizeof(float)));
    float *d_S;         gpuErrchk(cudaMalloc(&d_S, N *     sizeof(float)));

    cusolverStatus_t stat;

    // --- CUDA solver initialization
    cusolverDnHandle_t solver_handle;
    cusolveSafeCall(cusolverDnCreate(&solver_handle));

    cusolveSafeCall(cusolverDnSgesvd_bufferSize(solver_handle, M, N, &work_size));

    float *work;    gpuErrchk(cudaMalloc(&work, work_size * sizeof(float)));

    // --- CUDA SVD execution - Singular values only
    timerGPU.StartCounter();
    cusolveSafeCall(cusolverDnSgesvd(solver_handle, 'N', 'N', M, N, d_A, M, d_S, NULL, M, NULL, N, work, work_size, NULL, devInfo));
    elapsedTime = timerGPU.GetCounter();

    int devInfo_h = 0;
    gpuErrchk(cudaMemcpy(&devInfo_h, devInfo, sizeof(int), cudaMemcpyDeviceToHost));
    if (devInfo_h == 0)
        printf("SVD successfull for the singular values calculation only\n\n");
    else if (devInfo_h < 0)
        printf("SVD unsuccessfull for the singular values calculation only. Parameter %i is wrong\n", -devInfo_h);
    else
        printf("SVD unsuccessfull for the singular values calculation only. A number of %i superdiagonals of an intermediate bidiagonal form did not converge to zero\n", devInfo_h);

    printf("Calculation of the singular values only: %f ms\n\n", elapsedTime);

    // --- Moving the results from device to host
    //gpuErrchk(cudaMemcpy(h_S, d_S, N * sizeof(float), cudaMemcpyDeviceToHost));
    //for (int i = 0; i < N; i++) std::cout << "d_S[" << i << "] = " << h_S[i] << std::endl;

    // --- CUDA SVD execution - Full SVD
    timerGPU.StartCounter();
    cusolveSafeCall(cusolverDnSgesvd(solver_handle, 'A', 'A', M, N, d_A, M, d_S, d_U, M, d_V, N, work, work_size, NULL, devInfo));
    elapsedTime = timerGPU.GetCounter();

    devInfo_h = 0;
    gpuErrchk(cudaMemcpy(&devInfo_h, devInfo, sizeof(int), cudaMemcpyDeviceToHost));
    if (devInfo_h == 0)
        printf("SVD successfull for the full SVD calculation\n\n");
    else if (devInfo_h < 0)
        printf("SVD unsuccessfull for the full SVD calculation. Parameter %i is wrong\n", -devInfo_h);
    else
        printf("SVD unsuccessfull for the full SVD calculation. A number of %i superdiagonals of an intermediate bidiagonal form did not converge to zero\n", devInfo_h);

    printf("Calculation of the full SVD calculation: %f ms\n\n", elapsedTime);

    cusolveSafeCall(cusolverDnDestroy(solver_handle));

    return 0;

}

编辑 - 跨越不同版本的CUDA的表现

对于CUDA 8.0矩阵,我比较了仅奇异值计算和CUDA 9.1CUDA 10.05000x5000的完整SVD计算的性能。以下是GTX 960的结果。

Computation type               CUDA 8.0     CUDA 9.1     CUDA 10.0     
__________________________________________________________________

Singular values only           17s          15s          15s
Full SVD                       161s         159s         457s
__________________________________________________________________