我正在尝试进行FFT加内核计算。 FFT:managedCUDA库 kernel calc:自己的内核
C#代码
$xml_url = "https://itunes.apple.com/{$countryCode}/rss/customerreviews/page={$i}/id={$appId}/sortBy=mostRecent/xml"
内核代码
public void cuFFTreconstruct() {
CudaContext ctx = new CudaContext(0);
CudaKernel cuKernel = ctx.LoadKernel("kernel_Array.ptx", "cu_ArrayInversion");
float[] fData = new float[Resolution * Resolution * 2];
float[] result = new float[Resolution * Resolution * 2];
CudaDeviceVariable<float> devData = new CudaDeviceVariable<float>(Resolution * Resolution * 2);
CudaDeviceVariable<float> copy_devData = new CudaDeviceVariable<float>(Resolution * Resolution * 2);
int i, j;
Random rnd = new Random();
double avrg = 0.0;
for (i = 0; i < Resolution; i++)
{
for (j = 0; j < Resolution; j++)
{
fData[(i * Resolution + j) * 2] = i + j * 2;
fData[(i * Resolution + j) * 2 + 1] = 0.0f;
}
}
devData.CopyToDevice(fData);
CudaFFTPlan1D plan1D = new CudaFFTPlan1D(Resolution * 2, cufftType.C2C, Resolution * 2);
plan1D.Exec(devData.DevicePointer, TransformDirection.Forward);
cuKernel.GridDimensions = new ManagedCuda.VectorTypes.dim3(Resolution / 256, Resolution, 1);
cuKernel.BlockDimensions = new ManagedCuda.VectorTypes.dim3(256, 1, 1);
cuKernel.Run(devData.DevicePointer, copy_devData.DevicePointer, Resolution);
devData.CopyToHost(result);
for (i = 0; i < Resolution; i++)
{
for (j = 0; j < Resolution; j++)
{
ResultData[i, j, 0] = result[(i * Resolution + j) * 2];
ResultData[i, j, 1] = result[(i * Resolution + j) * 2 + 1];
}
}
ctx.FreeMemory(devData.DevicePointer);
ctx.FreeMemory(copy_devData.DevicePointer);
}
但是这个程序效果不好。 发生以下错误:
ErrorLaunchFailed:执行内核时设备发生异常。常见原因包括解除引用无效设备指针和访问超出范围的共享内存。 不能使用上下文,因此必须销毁它(并且应该创建一个新的上下文)。 此上下文中的所有现有设备内存分配均无效,如果程序要继续使用CUDA,则必须重新构建。
答案 0 :(得分:2)
FFT计划将元素的数量,即复数的数量作为参数。因此,删除计划构造函数的第一个参数中的* 2
。而批次数量的两倍也没有意义......
此外,我使用float2
或cuFloatComplex
类型(在ManagedCuda.VectorTypes
中)来表示复数,而不是两个原始浮点数。要释放内存,请使用CudaDeviceVariable的Dispose方法。否则,GC稍后会在内部调用它。
主机代码看起来像这样:
int Resolution = 512;
CudaContext ctx = new CudaContext(0);
CudaKernel cuKernel = ctx.LoadKernel("kernel.ptx", "cu_ArrayInversion");
//float2 or cuFloatComplex
float2[] fData = new float2[Resolution * Resolution];
float2[] result = new float2[Resolution * Resolution];
CudaDeviceVariable<float2> devData = new CudaDeviceVariable<float2>(Resolution * Resolution);
CudaDeviceVariable<float2> copy_devData = new CudaDeviceVariable<float2>(Resolution * Resolution);
int i, j;
Random rnd = new Random();
double avrg = 0.0;
for (i = 0; i < Resolution; i++)
{
for (j = 0; j < Resolution; j++)
{
fData[(i * Resolution + j)].x = i + j * 2;
fData[(i * Resolution + j)].y = 0.0f;
}
}
devData.CopyToDevice(fData);
//Only Resolution times in X and Resolution batches
CudaFFTPlan1D plan1D = new CudaFFTPlan1D(Resolution, cufftType.C2C, Resolution);
plan1D.Exec(devData.DevicePointer, TransformDirection.Forward);
cuKernel.GridDimensions = new ManagedCuda.VectorTypes.dim3(Resolution / 256, Resolution, 1);
cuKernel.BlockDimensions = new ManagedCuda.VectorTypes.dim3(256, 1, 1);
cuKernel.Run(devData.DevicePointer, copy_devData.DevicePointer, Resolution);
devData.CopyToHost(result);
for (i = 0; i < Resolution; i++)
{
for (j = 0; j < Resolution; j++)
{
//ResultData[i, j, 0] = result[(i * Resolution + j)].x;
//ResultData[i, j, 1] = result[(i * Resolution + j)].y;
}
}
//And better free memory using Dispose()
//ctx.FreeMemory is only meant for raw device pointers obtained from somewhere else...
devData.Dispose();
copy_devData.Dispose();
plan1D.Dispose();
//For Cuda Memory checker and profiler:
CudaContext.ProfilerStop();
ctx.Dispose();
答案 1 :(得分:0)
感谢您提出此建议。
我尝试过建议的代码。 但是,错误仍然存在。 (错误:ErrorLaunchFailed:执行内核时设备发生异常。常见原因包括解除引用无效设备指针和访问超出范围的共享内存。上下文无法使用,因此必须销毁它(并且应该是新的)此上下文中的所有现有设备内存分配都是无效的,如果程序要继续使用CUDA,则必须重新构建。)
要使用float2,我按如下方式更改了cu代码
extern "C"
{
__global__ void cu_ArrayInversion(float2* data_A, float2* data_B, int Resolution)
{
int image_x = blockIdx.x * blockDim.x + threadIdx.x;
int image_y = blockIdx.y;
data_B[(Resolution * image_x + image_y)].x = data_A[(Resolution * image_y + image_x)].x;
data_B[(Resolution * image_x + image_y)].y = data_A[(Resolution * image_y + image_x)].y;
}
当程序执行“cuKernel.Run”时,进程停止。
ptx文件
.version 4.3
.target sm_20
.address_size 32
// .globl cu_ArrayInversion
.global .texref texref;
.visible .entry cu_ArrayInversion(
.param .u32 cu_ArrayInversion_param_0,
.param .u32 cu_ArrayInversion_param_1,
.param .u32 cu_ArrayInversion_param_2
)
{
.reg .f32 %f<5>;
.reg .b32 %r<17>;
ld.param.u32 %r1, [cu_ArrayInversion_param_0];
ld.param.u32 %r2, [cu_ArrayInversion_param_1];
ld.param.u32 %r3, [cu_ArrayInversion_param_2];
cvta.to.global.u32 %r4, %r2;
cvta.to.global.u32 %r5, %r1;
mov.u32 %r6, %ctaid.x;
mov.u32 %r7, %ntid.x;
mov.u32 %r8, %tid.x;
mad.lo.s32 %r9, %r7, %r6, %r8;
mov.u32 %r10, %ctaid.y;
mad.lo.s32 %r11, %r10, %r3, %r9;
shl.b32 %r12, %r11, 3;
add.s32 %r13, %r5, %r12;
mad.lo.s32 %r14, %r9, %r3, %r10;
shl.b32 %r15, %r14, 3;
add.s32 %r16, %r4, %r15;
ld.global.v2.f32 {%f1, %f2}, [%r13];
st.global.v2.f32 [%r16], {%f1, %f2};
ret;
}
答案 2 :(得分:0)
感谢您的留言。
主机代码
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.Drawing.Imaging;
using ManagedCuda;
using ManagedCuda.CudaFFT;
using ManagedCuda.VectorTypes;
namespace WFA_CUDA_FFT
{
public partial class CuFFTMain : Form
{
float[, ,] FFTData2D;
int Resolution;
const int cuda_blockNum = 256;
public CuFFTMain()
{
InitializeComponent();
Resolution = 1024;
}
private void button1_Click(object sender, EventArgs e)
{
cuFFTreconstruct();
}
public void cuFFTreconstruct()
{
CudaContext ctx = new CudaContext(0);
ManagedCuda.BasicTypes.CUmodule cumodule = ctx.LoadModule("kernel.ptx");
CudaKernel cuKernel = new CudaKernel("cu_ArrayInversion", cumodule, ctx);
float2[] fData = new float2[Resolution * Resolution];
float2[] result = new float2[Resolution * Resolution];
FFTData2D = new float[Resolution, Resolution, 2];
CudaDeviceVariable<float2> devData = new CudaDeviceVariable<float2>(Resolution * Resolution);
CudaDeviceVariable<float2> copy_devData = new CudaDeviceVariable<float2>(Resolution * Resolution);
int i, j;
Random rnd = new Random();
double avrg = 0.0;
for (i = 0; i < Resolution; i++)
{
for (j = 0; j < Resolution; j++)
{
fData[i * Resolution + j].x = i + j * 2;
avrg += fData[i * Resolution + j].x;
fData[i * Resolution + j].y = 0.0f;
}
}
avrg = avrg / (double)(Resolution * Resolution);
for (i = 0; i < Resolution; i++)
{
for (j = 0; j < Resolution; j++)
{
fData[(i * Resolution + j)].x = fData[(i * Resolution + j)].x - (float)avrg;
}
}
devData.CopyToDevice(fData);
CudaFFTPlan1D plan1D = new CudaFFTPlan1D(Resolution, cufftType.C2C, Resolution);
plan1D.Exec(devData.DevicePointer, TransformDirection.Forward);
cuKernel.GridDimensions = new ManagedCuda.VectorTypes.dim3(Resolution / cuda_blockNum, Resolution, 1);
cuKernel.BlockDimensions = new ManagedCuda.VectorTypes.dim3(cuda_blockNum, 1, 1);
cuKernel.Run(devData.DevicePointer, copy_devData.DevicePointer, Resolution);
copy_devData.CopyToHost(result);
for (i = 0; i < Resolution; i++)
{
for (j = 0; j < Resolution; j++)
{
FFTData2D[i, j, 0] = result[i * Resolution + j].x;
FFTData2D[i, j, 1] = result[i * Resolution + j].y;
}
}
//Clean up
devData.Dispose();
copy_devData.Dispose();
plan1D.Dispose();
CudaContext.ProfilerStop();
ctx.Dispose();
}
}
}
内核代码
//Includes for IntelliSense
#define _SIZE_T_DEFINED
#ifndef __CUDACC__
#define __CUDACC__
#endif
#ifndef __cplusplus
#define __cplusplus
#endif
#include <cuda.h>
#include <device_launch_parameters.h>
#include <texture_fetch_functions.h>
#include "float.h"
#include <builtin_types.h>
#include <vector_functions.h>
#include <vector>
// Texture reference
texture<float2, 2> texref;
extern "C"
{
// Device code
__global__ void cu_ArrayInversion(float2* data_A, float2* data_B, int Resolution)
{
int image_x = blockIdx.x * blockDim.x + threadIdx.x;
int image_y = blockIdx.y;
data_B[(Resolution * image_x + image_y)].y = data_A[(Resolution * image_y + image_x)].x;
data_B[(Resolution * image_x + image_y)].x = data_A[(Resolution * image_y + image_x)].y;
}
}
首先我用.Net4.5编译。 此程序不起作用,并显示错误(System.BadImageFormatException)。 但是当FFT函数注释掉时,内核程序会运行。
第二,我从.Net 4.5转向.Net 4.0。 FFT函数有效,但内核不运行并显示错误。
我的电脑是Windows 8.1专业版,我使用的是visual studio 2013。