问题
我希望将y = mx + b
等式(其中m为SLOPE
,b为INTERCEPT
)应用于数据集,该数据集将按照SQL代码中的说明进行检索。 (MySQL)查询的值是:
SLOPE = 0.0276653965651912
INTERCEPT = -57.2338357550468
SQL代码
SELECT
((sum(t.YEAR) * sum(t.AMOUNT)) - (count(1) * sum(t.YEAR * t.AMOUNT))) /
(power(sum(t.YEAR), 2) - count(1) * sum(power(t.YEAR, 2))) as SLOPE,
((sum( t.YEAR ) * sum( t.YEAR * t.AMOUNT )) -
(sum( t.AMOUNT ) * sum(power(t.YEAR, 2)))) /
(power(sum(t.YEAR), 2) - count(1) * sum(power(t.YEAR, 2))) as INTERCEPT,
FROM
(SELECT
D.AMOUNT,
Y.YEAR
FROM
CITY C, STATION S, YEAR_REF Y, MONTH_REF M, DAILY D
WHERE
-- For a specific city ...
--
C.ID = 8590 AND
-- Find all the stations within a 15 unit radius ...
--
SQRT( POW( C.LATITUDE - S.LATITUDE, 2 ) + POW( C.LONGITUDE - S.LONGITUDE, 2 ) ) < 15 AND
-- Gather all known years for that station ...
--
S.STATION_DISTRICT_ID = Y.STATION_DISTRICT_ID AND
-- The data before 1900 is shaky; insufficient after 2009.
--
Y.YEAR BETWEEN 1900 AND 2009 AND
-- Filtered by all known months ...
--
M.YEAR_REF_ID = Y.ID AND
-- Whittled down by category ...
--
M.CATEGORY_ID = '001' AND
-- Into the valid daily climate data.
--
M.ID = D.MONTH_REF_ID AND
D.DAILY_FLAG_ID <> 'M'
GROUP BY Y.YEAR
ORDER BY Y.YEAR
) t
问题
以下结果(计算线的起点和终点)显示不正确。为什么结果会偏离~10度(例如,异常值会使数据偏斜)?
(1900 * 0.0276653965651912)+ (-57.2338357550468)= -4.66958228
(2009 * 0.0276653965651912)+ (-57.2338357550468)= -1.65405406
(请注意,数据不再与图像匹配;代码。)
我原本预计1900年的结果大约是10(不是-4.67),2009年的结果大约是11.50(不是-1.65)。
相关网站
答案 0 :(得分:1)
尝试拆分功能,你错误地计算了参数。看看here以供参考。
我会做类似以下的事情(请原谅我不太记得SQL语法和临时变量的事实,所以代码可能实际上是错误的):
SELECT
sum(t.YEAR) / count(1) AS avgX,
sum(t.AMOUNT) / count(1) AS avgY,
sum(t.AMOUNT*t.YEAR) / count(1) AS avgXY,
sum(power(t.YEAR, 2)) / count(1) AS avgXsq,
( avgXY - avgX * avgY ) / ( avgXsq - power(avgX, 2) ) as SLOPE,
avgY - SLOPE * avgX as INTERCEPT,
答案 1 :(得分:0)
现在已经证实这是正确的:
SELECT
((sum(t.YEAR) * sum(t.AMOUNT)) - (count(1) * sum(t.YEAR * t.AMOUNT))) /
(power(sum(t.YEAR), 2) - count(1) * sum(power(t.YEAR, 2))) as SLOPE,
((sum( t.YEAR ) * sum( t.YEAR * t.AMOUNT )) -
(sum( t.AMOUNT ) * sum(power(t.YEAR, 2)))) /
(power(sum(t.YEAR), 2) - count(1) * sum(power(t.YEAR, 2))) as INTERCEPT,
((avg(t.AMOUNT * t.YEAR)) - avg(t.AMOUNT) * avg(t.YEAR)) /
(stddev( t.AMOUNT ) * stddev( t.YEAR )) as CORRELATION
FROM (
SELECT
AVG(D.AMOUNT) as AMOUNT,
Y.YEAR as YEAR
FROM
CITY C,
STATION S,
YEAR_REF Y,
MONTH_REF M,
DAILY D
WHERE
C.ID = 8590 AND
SQRT(
POW( C.LATITUDE - S.LATITUDE, 2 ) +
POW( C.LONGITUDE - S.LONGITUDE, 2 ) ) < 15 AND
S.STATION_DISTRICT_ID = Y.STATION_DISTRICT_ID AND
Y.YEAR BETWEEN 1900 AND 2009 AND
M.YEAR_REF_ID = Y.ID AND
M.CATEGORY_ID = '001' AND
M.ID = D.MONTH_REF_ID AND
D.DAILY_FLAG_ID <> 'M'
GROUP BY
Y.YEAR
) t
有关斜率,截距和(Pearson)相关性的详细信息,请参见图像。