线性回归计算在一个数据帧中多次计算

时间:2013-02-02 05:33:14

标签: r statistics linear-regression

我正在使用R来评估气候数据,我有一个看起来像以下小型化版本的数据集...请原谅我粗略的帖子礼仪,我希望这篇文章是可以理解的。

[0][STA.NAME] [YEAR] [SUM.CDD]  
1 NAME1 1967    760  
2 NAME1 1985    800  
3 NAME1 1996    740  
4 NAME1 2003    810  
5 NAME1 2011    790  
6 NAME2 1967    700  
7 NAME2 1985    690  
8 NAME2 1996    850  
9 NAME2 2003    790  
10 NAME3    1967    760  
11 NAME3    1985    800  
12 NAME3    1990    740  
13 NAME3    1996    810  
14 NAME3    2003    790  
15 NAME3    2011    800  

我试图用这个

返回一个新的DF
[STA.NAME] [Eq'n of trend]  
NAME1  (y = mx + b)  
NAME2  (y = mx + b)  

等...

最终,我需要计算趋势的方差,以及数据的总方差,并希望最终将这些数据附加到此结果数据集中... ...

[STA.NAME] [TREND] [VAR.TREND] [VAR.DATA]   
with values in rows, 1 for each STA.NAME...

非常感谢任何帮助,如果有一个比lm()更好的方法,我目前难以理解,我也会感兴趣。

非常感谢,

杰西

1 个答案:

答案 0 :(得分:8)

以下是一个简单的解决方案,使用ddply()中的plyr来返回每个组的系数:

首先复制数据:

x <- read.table(text="
STA.NAME YEAR SUM.CDD  
1 NAME1 1967    760  
2 NAME1 1985    800  
3 NAME1 1996    740  
4 NAME1 2003    810  
5 NAME1 2011    790  
6 NAME2 1967    700  
7 NAME2 1985    690  
8 NAME2 1996    850  
9 NAME2 2003    790  
10 NAME3    1967    760  
11 NAME3    1985    800  
12 NAME3    1990    740  
13 NAME3    1996    810  
14 NAME3    2003    790  
15 NAME3    2011    800  ", header=TRUE)

现在进行建模:

library(plyr)
ddply(x, .(STA.NAME), function(z)coef(lm(SUM.CDD ~ YEAR, data=z)))

  STA.NAME (Intercept)      YEAR
1    NAME1   -444.8361 0.6147541
2    NAME2  -6339.2047 3.5702200
3    NAME3   -995.2381 0.8928571

现在,根据您想要做的事情,创建单个数据模型可能更简单(也许更有意义):

fit <- lm(SUM.CDD ~ YEAR + STA.NAME, data=x)

获取摘要:

summary(fit)

Call:
lm(formula = SUM.CDD ~ YEAR + STA.NAME, data = x)

Residuals:
   Min     1Q Median     3Q    Max 
-63.57 -22.21  10.72  18.62  80.72 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)  
(Intercept)   -2065.6401  1463.5353  -1.411   0.1858  
YEAR              1.4282     0.7345   1.945   0.0778 .
STA.NAMENAME2   -15.8586    27.5835  -0.575   0.5769  
STA.NAMENAME3     3.9046    24.7089   0.158   0.8773  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 40.8 on 11 degrees of freedom
Multiple R-squared: 0.3056, Adjusted R-squared: 0.1162 
F-statistic: 1.614 on 3 and 11 DF,  p-value: 0.2424 

仅提取系数:

coef(fit)
  (Intercept)          YEAR STA.NAMENAME2 STA.NAMENAME3 
 -2065.640078      1.428247    -15.858650      3.904632 

最后,您可能希望使用交互术语来拟合模型。此模型可为您提供与原始plyr解决方案相同的结果。根据您的数据和目标,这可能是这样做的方式:

fit <- lm(SUM.CDD ~ YEAR * STA.NAME, data=x)
summary(fit)

Call:
lm(formula = SUM.CDD ~ YEAR * STA.NAME, data = x)

Residuals:
    Min      1Q  Median      3Q     Max 
-57.682 -13.166  -1.012  23.006  63.046 

Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)         -444.8361  2280.7464  -0.195    0.850
YEAR                   0.6148     1.1447   0.537    0.604
STA.NAMENAME2      -5894.3687  3661.9795  -1.610    0.142
STA.NAMENAME3       -550.4020  3221.8390  -0.171    0.868
YEAR:STA.NAMENAME2     2.9555     1.8406   1.606    0.143
YEAR:STA.NAMENAME3     0.2781     1.6172   0.172    0.867

Residual standard error: 39.17 on 9 degrees of freedom
Multiple R-squared: 0.4763, Adjusted R-squared: 0.1854 
F-statistic: 1.637 on 5 and 9 DF,  p-value: 0.2451