不使用Aforge或OpenCv进行圆检测

时间:2015-01-13 20:29:07

标签: c# image opencv image-processing aforge

我希望在没有库的情况下检测位图中的圆圈。首先,我使用otsu thresold进行二值化。二值化后,我使用了拉普拉斯边缘检测。现在我的位图中有一个圆圈。我怎样才能发现这个圈子。

注意:我试图画一个圆圈并浮动x和y坐标。但这种方式是如此缓慢,这种方式有半径问题。因为,如果我的tempCircle的半径= 10且实心圆的半径= 9,那么我的算法找不到圆圈。

    BitmapProcess bmpPro = new BitmapProcess((Bitmap)(pictureBox1.Image));
    bmpPro.LockBits();
    int black = 0, temp = 0,fixX=0,fixY=0;

    Bitmap bmp = (Bitmap)pictureBox1.Image;
    Graphics g = this.pictureBox1.CreateGraphics();
    Pen pen = new Pen(Color.Red, 10);
    int x = 0, y = 0;
    for (int a = 0; a < pictureBox1.Image.Width - 1; a += 1)
    {
        for (int b = 0; b < pictureBox1.Image.Height - 1; b++)
        {
            double radius = 10;

            temp = 0;
            for (double i = 0.0; i < 360.0; i += 1)
            {
                double angle = i * System.Math.PI / 180;
                x = (int)(a + radius * System.Math.Cos(angle));
                y = (int)(b + radius * System.Math.Sin(angle));
                Color aa = bmpPro.GetPixel(Math.Abs(x), Math.Abs(y));

                if (bmpPro.GetPixel(Math.Abs(x), Math.Abs(y))!=Color.Black) temp++;

            }
            if (temp > black)
            {
                black = temp;
                fixX = a;
                fixY = b;

            }

        }

    }
    g.DrawEllipse(pen,fixX,fixY,50,50);



using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Linq;
using System.Runtime.InteropServices;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace LockBitBitmap
{
    class BitmapProcess
    {
        public int b = 0;
        int TotalPixelLocked; 
        Bitmap source = null; //kaynak bmp
        IntPtr Iptr = IntPtr.Zero; //baslangıc adresi
        BitmapData bitmapData = null;

        public byte[] Pixels { get; set; }
        public int Depth { get; set; }
        public int Width { get; set; }
        public int Height { get; set; }

        public BitmapProcess(Bitmap source)
        {
            this.source = source;  //bitmapı dısardan al
        }

        public void LockBits()
        {
            //resmin en ve boyunu al
            Width = source.Width;
            Height = source.Height;

            //kilit için rectangle olustur
            Rectangle rect = new Rectangle(0,0,Width,Height);

            //kaynak bitmap ın pixel formatını al
            Depth = System.Drawing.Bitmap.GetPixelFormatSize(source.PixelFormat);

            //pixel basına bit sayısını bul(Bpp)
            if (Depth != 8 && Depth != 24 && Depth != 32)
            {
                return; //bit türü desteklenmiyor...
            }

            //bitmapı kilitle ve veriyi döndür...          
            bitmapData = source.LockBits(rect, ImageLockMode.ReadWrite, source.PixelFormat);

            //kilitlenecek pixel sayısını al
            TotalPixelLocked = Math.Abs(bitmapData.Stride) * source.Height;

            //pixel verilerini tutmak için byte dizisi olustur
            int step = Depth / 8;
            Pixels = new byte[TotalPixelLocked * step];
            Iptr = bitmapData.Scan0;

            //verileri pointerden diziye aktar
            Marshal.Copy(Iptr, Pixels, 0, TotalPixelLocked);

        }

        public Color GetPixel(int x, int y)
        {
            Color clr = Color.Empty; //boş renk

            //renkli nesne sayısını al
            int cCount = Depth / 8;

            //istenen pixelin baslangıc adresini bul
            int i = y * bitmapData.Stride + x * cCount;
            if (i > (Pixels.Length - cCount))
            {
                throw new IndexOutOfRangeException("index out of range ( dizi adresi geçersiz)");
            }
            if (Depth == 32) //r g b a
            {
                byte b = Pixels[i];
                byte g = Pixels[i + 1];
                byte r = Pixels[i + 2];
                byte a = Pixels[i + 3];
                clr = Color.FromArgb(a,r,g,b);
            }

            if (Depth == 24) //r g b 
            {
                byte b = Pixels[i];
                byte g = Pixels[i + 1];
                byte r = Pixels[i + 2];
                clr = Color.FromArgb(r, g, b);
            }

            if (Depth == 8) // r g b hepsi aynı
            {
                byte c = Pixels[i];
                clr = Color.FromArgb(c,c,c);
            }


            return clr;

        }

        public void SetPixel(int x, int y, Color color)
        {
            // renkli nesne sayısı
            int cCount = Depth / 8;

            // baslangıc indexini bul
            //int i = ((y * Width) + x) * cCount;
            int i = y * bitmapData.Stride + x * cCount;
            if (i > (Pixels.Length - cCount))
            {
                throw new IndexOutOfRangeException("index out of range ( dizi adresi geçersiz)");
            }
            if (Depth == 32) // r,g,b, (alpha)
            {
                Pixels[i] = color.B;
                Pixels[i + 1] = color.G;
                Pixels[i + 2] = color.R;
                Pixels[i + 3] = color.A;
            }
            if (Depth == 24) // r,g,b
            {
                Pixels[i] = color.B;
                Pixels[i + 1] = color.G;
                Pixels[i + 2] = color.R;
                b++;
            }
            if (Depth == 8)//r g b hepsi aynı
            {
                Pixels[i] = color.B;
            }
        }

        public Bitmap giveBitmap()
        {
            System.Runtime.InteropServices.Marshal.Copy(Pixels, 0, Iptr, TotalPixelLocked);
            source.UnlockBits(bitmapData);
            return source;
        }





    }
}

2 个答案:

答案 0 :(得分:0)

为什么不看一下谢永红和强骥“一种新的有效的ELLIPSE检测方法”所写的论文。 link

我知道标题中有椭圆,但你肯定知道cricle只是非常特殊的椭圆;)。

提示:处理的下一步应该是聚类您的边缘像素 - 这样您就会知道哪些像素正在创建对象。我们知道对象有一些属性,你应该确定哪个对象属性使该对象成为一个圆圈 - 然后在你的代码中实现这些基于属性的过滤器。

答案 1 :(得分:0)

如果图片中只有几个圆圈,我建议您使用RANSAC

简要说明:从边缘像素中随机选取3个点并选择适合这些点的find the equation of the circle。在所有剩余边缘点上使用此等式,以查看它们中有多少位于圆上,即满足等式的数量。重复该过程N次(N可以基于各种因素决定,包括边缘点的数量,圆的数量等),并记录具有最大数量的内点(位于圆上的点)的迭代。对应于此最大迭代的等式是您的最佳拟合圆。

如果图片中有多个圆圈,请在删除或遮盖所有符合之前找到的圆圈的点后重复上述步骤。