改善圆检测

时间:2014-11-23 23:03:11

标签: opencv geometry emgucv hough-transform

我正在尝试检测图像中的圆圈。我使用EmguCV在C#中编写了以下代码。它大部分时间都有效,但在某些情况下,它会检测到稍微偏移到一侧的较小或较大的圆圈。

这是我的代码:

        Thread.Sleep(1000);
        imgCrp.Save(DateTime.Now.ToString("yyMMddHHmmss") + ".jpg");

        imgCrpLab = imgCrp.Convert<Lab, Byte>();
        imgIsolatedCathNTipBW = new Image<Gray, Byte>(imgCrp.Size);
        CvInvoke.cvInRangeS(imgCrpLab.Split()[2], new MCvScalar(0), new MCvScalar(100), imgIsolatedCathNTipBW);

        imgCrpNoBgrnd = imgCrp.Copy(imgIsolatedCathNTipBW.Not());
        imgCrpNoBgrndGray = imgCrpNoBgrnd.Convert<Gray, Byte>().PyrUp().PyrDown();
        Thread.Sleep(1000);
        imgCrpNoBgrndGray.Save(DateTime.Now.ToString("yyMMddHHmmss") + ".jpg");

        Gray cannyThreshold = new Gray(150);
        Gray cannyThresholdLinking = new Gray(85);
        Gray circleAccumulatorThreshold = new Gray(15);

        imgCrpNoBgrndGrayCanny = imgCrpNoBgrndGray.Canny(cannyThreshold.Intensity, cannyThresholdLinking.Intensity);
        Thread.Sleep(1000);
        imgCrpNoBgrndGrayCanny.Save(DateTime.Now.ToString("yyMMddHHmmss") + ".jpg");

        circarrTip = imgCrpNoBgrndGrayCanny.HoughCircles(
            cannyThreshold,
            circleAccumulatorThreshold,
            1, //Resolution of the accumulator used to detect centers of the circles
            500, //min distance 
            15, //min radius
            42 //max radius
            )[0]; //Get the circles from the first channel

        imgCathNoTip = imgIsolatedCathNTipBW.Copy().Not();
        foreach (CircleF circle in circarrTip)
        {
            circLarger2RemTip = circle;
            circLarger2RemTip.Radius = circle.Radius;
            imgCathNoTip.Draw(circLarger2RemTip, new Gray(140), 1); // -1 IS TO FILL THE CIRCLE
        }
        Thread.Sleep(1000);
        imgCathNoTip.Save(DateTime.Now.ToString("yyMMddHHmmss") + ".jpg");

睡眠命令只是为了确保文件名不同,稍后会删除。 我还附加了在此过程中由此代码保存的图像。最后一张图像显示检测到的圆圈较大并且也向右移动。

任何人都可以查看我的代码,让我知道如何改进它以更准确地检测圆圈吗?

提前致谢。

enter image description here enter image description here enter image description here enter image description here

1 个答案:

答案 0 :(得分:7)

类似于我在Detect semi-circle in opencv中的答案我发现了一个问题:在hough circle检测之前不要提取canny边缘检测,因为openCV houghCircle本身会计算Gradient和canny。所以你要做的是从中提取canny和边缘图像并检测其中的圆圈,从而导致(在最好的情况下)每个边缘周围的2个新边缘=&gt;错误的方式!

正如在openCV教程中所做的那样,你可以直接在你的灰度图像上计算HoughCircles,给我这个结果:

输入:

enter image description here

参数:

cannyHigh = 100
cannyLow = 20
minSize = 0
maxSize = 100

代码:

int mainHough()
{
    cv::Mat input = cv::imread("../inputData/CircleDetectGray.jpg");

    // you could load as grayscale if you want, but I used it for (colored) output too
    cv::Mat gray;
    cv::cvtColor(input,gray,CV_BGR2GRAY);

    float canny1 = 100;
    float canny2 = 20;

    // canny here only for visualizing the chosen parameters
    //cv::Mat canny;
    //cv::Canny(gray, canny, canny1,canny2);
    //cv::imshow("canny",canny);

    std::vector<cv::Vec3f> circles;
    /// Apply the Hough Transform to find the circles
    cv::HoughCircles( gray, circles, CV_HOUGH_GRADIENT, 1, gray.cols/8, canny1,canny2,  0, 100 );

    std::cout << "found " << circles.size() << " circles" << std::endl;
    /// Draw the circles detected
    for( size_t i = 0; i < circles.size(); i++ ) 
    {
        cv::Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
        int radius = cvRound(circles[i][2]);
        cv::circle( input, center, 3, cv::Scalar(0,255,255), -1);
        cv::circle( input, center, radius, cv::Scalar(0,0,255), 1 );
    }

结果:

enter image description here

使用我在Detect semi-circle in opencv发布的RANSAC方法(我的第二个回答,但略微改变以搜索最完整的圆圈)(输入:canny edge)

代码:

float verifyCircle(cv::Mat dt, cv::Point2f center, float radius, std::vector<cv::Point2f> & inlierSet)
{
 unsigned int counter = 0;
 unsigned int inlier = 0;
 float minInlierDist = 2.0f;
 float maxInlierDistMax = 100.0f;
 float maxInlierDist = radius/25.0f;
 if(maxInlierDist<minInlierDist) maxInlierDist = minInlierDist;
 if(maxInlierDist>maxInlierDistMax) maxInlierDist = maxInlierDistMax;

 // choose samples along the circle and count inlier percentage
 for(float t =0; t<2*3.14159265359f; t+= 0.05f)
 {
     counter++;
     float cX = radius*cos(t) + center.x;
     float cY = radius*sin(t) + center.y;

     if(cX < dt.cols)
     if(cX >= 0)
     if(cY < dt.rows)
     if(cY >= 0)
     if(dt.at<float>(cY,cX) < maxInlierDist)
     {
        inlier++;
        inlierSet.push_back(cv::Point2f(cX,cY));
     }
 }

 return (float)inlier/float(counter);
}


inline void getCircle(cv::Point2f& p1,cv::Point2f& p2,cv::Point2f& p3, cv::Point2f& center, float& radius)
{
  float x1 = p1.x;
  float x2 = p2.x;
  float x3 = p3.x;

  float y1 = p1.y;
  float y2 = p2.y;
  float y3 = p3.y;

  // PLEASE CHECK FOR TYPOS IN THE FORMULA :)
  center.x = (x1*x1+y1*y1)*(y2-y3) + (x2*x2+y2*y2)*(y3-y1) + (x3*x3+y3*y3)*(y1-y2);
  center.x /= ( 2*(x1*(y2-y3) - y1*(x2-x3) + x2*y3 - x3*y2) );

  center.y = (x1*x1 + y1*y1)*(x3-x2) + (x2*x2+y2*y2)*(x1-x3) + (x3*x3 + y3*y3)*(x2-x1);
  center.y /= ( 2*(x1*(y2-y3) - y1*(x2-x3) + x2*y3 - x3*y2) );

  radius = sqrt((center.x-x1)*(center.x-x1) + (center.y-y1)*(center.y-y1));
}



std::vector<cv::Point2f> getPointPositions(cv::Mat binaryImage)
{
 std::vector<cv::Point2f> pointPositions;

 for(unsigned int y=0; y<binaryImage.rows; ++y)
 {
     //unsigned char* rowPtr = binaryImage.ptr<unsigned char>(y);
     for(unsigned int x=0; x<binaryImage.cols; ++x)
     {
         //if(rowPtr[x] > 0) pointPositions.push_back(cv::Point2i(x,y));
         if(binaryImage.at<unsigned char>(y,x) > 0) pointPositions.push_back(cv::Point2f(x,y));
     }
 }

 return pointPositions;
}



int mainRANSAC_circle()
{
    cv::Mat color = cv::imread("../inputData/CircleDetectGray.jpg");
    cv::Mat gray;

    // convert to grayscale
    // you could load as grayscale if you want, but I used it for (colored) output too
    cv::cvtColor(color, gray, CV_BGR2GRAY);


    cv::Mat mask;

    float canny1 = 100;
    float canny2 = 20;

    cv::Mat canny;
    cv::Canny(gray, canny, canny1,canny2);
    cv::imshow("canny",canny);

    mask = canny;



    std::vector<cv::Point2f> edgePositions;
    edgePositions = getPointPositions(mask);

    // create distance transform to efficiently evaluate distance to nearest edge
    cv::Mat dt;
    cv::distanceTransform(255-mask, dt,CV_DIST_L1, 3);

    //TODO: maybe seed random variable for real random numbers.

    unsigned int nIterations = 0;

    cv::Point2f bestCircleCenter;
    float bestCircleRadius;
    float bestCirclePercentage = 0;
    float minRadius = 10;   // TODO: ADJUST THIS PARAMETER TO YOUR NEEDS, otherwise smaller circles wont be detected or "small noise circles" will have a high percentage of completion

    //float minCirclePercentage = 0.2f;
    float minCirclePercentage = 0.05f;  // at least 5% of a circle must be present? maybe more...

    int maxNrOfIterations = edgePositions.size();   // TODO: adjust this parameter or include some real ransac criteria with inlier/outlier percentages to decide when to stop

    for(unsigned int its=0; its< maxNrOfIterations; ++its)
    {
        //RANSAC: randomly choose 3 point and create a circle:
        //TODO: choose randomly but more intelligent, 
        //so that it is more likely to choose three points of a circle. 
        //For example if there are many small circles, it is unlikely to randomly choose 3 points of the same circle.
        unsigned int idx1 = rand()%edgePositions.size();
        unsigned int idx2 = rand()%edgePositions.size();
        unsigned int idx3 = rand()%edgePositions.size();

        // we need 3 different samples:
        if(idx1 == idx2) continue;
        if(idx1 == idx3) continue;
        if(idx3 == idx2) continue;

        // create circle from 3 points:
        cv::Point2f center; float radius;
        getCircle(edgePositions[idx1],edgePositions[idx2],edgePositions[idx3],center,radius);

        // inlier set unused at the moment but could be used to approximate a (more robust) circle from alle inlier
        std::vector<cv::Point2f> inlierSet;

        //verify or falsify the circle by inlier counting:
        float cPerc = verifyCircle(dt,center,radius, inlierSet);

        // update best circle information if necessary
        if(cPerc >= bestCirclePercentage)
            if(radius >= minRadius)
            {
                bestCirclePercentage = cPerc;
                bestCircleRadius = radius;
                bestCircleCenter = center;
            }

    }

    std::cout << "bestCirclePerc: " << bestCirclePercentage << std::endl;
    std::cout << "bestCircleRadius: " << bestCircleRadius << std::endl;

    // draw if good circle was found
    if(bestCirclePercentage >= minCirclePercentage)
        if(bestCircleRadius >= minRadius);
    cv::circle(color, bestCircleCenter,bestCircleRadius, cv::Scalar(255,255,0),1);


    cv::imshow("output",color);
    cv::imshow("mask",mask);
    cv::imwrite("../outputData/1_circle_color.png", color);
    cv::imwrite("../outputData/1_circle_mask.png", mask);
    //cv::imwrite("../outputData/1_circle_normalized.png", normalized);
    cv::waitKey(0);

    return 0;
}

我实现了这个结果:

enter image description here

没有C#代码,对不起。