我正在用Python编写一个代码来预测氢的能量水平,我将用它作为研究夸克能量水平的模板。我使用scipy.integrate.odeint()
函数来求解Shroedinger方程,它可以在低n=6
的能量水平下正常工作。我不希望我有太多需要超越它,但是odeint会返回Excess work done on this call (perhaps wrong Dfun type).
,这只会鼓励我扩展我能预测的内容。
使用的Shroedinger方程替换是:
u'' - (l*(l+1)/r**2 - 2mu_e(E-V_emag(r))) * u = 0
=>
u' = v
v' = ((l*(l+1))/(r**2) - 2.0*mu_e*(E - V_emag(r)))*u
然后我在其上使用scipy.integrate.odeint()
并迭代能量并使用我已定义的其他函数来评估结果中的转折点和节点。我找到能量水平的方法是找到尽可能低的E值,其中转折点和节点的数量与它应该的相匹配;然后将L
递增1并找到新的地面能量,例如如果L=0
我会找到n=1
能量,如果L=3
,我会找到n=2
能量。
一旦代码增加到L=7
,它就不会返回任何有用的内容。 r
的范围已经延长,但我已尝试将其保持不变以减少步数但无济于事。这段代码是自学成才的,所以在我的研究中,我已经读过关于雅可比人的文章。我担心我还没有弄清楚它们是什么,或者我还需要它们。有什么想法吗?
def v_emag(r):
v = -alpha/r
return v
def s_e(y,r,l,E): #Shroedinger equation for electromagntism
x = numpy.zeros_like(y)
x[0] = y[1]
x[1] = ((l*(l+1))/(r**2) - 2.0*mu_e*(E - V_emag(r)))*y[0]
return x
def i_s_e(l,E,start=0.001,stop=None,step=(0.005*bohr)):
if stop is None:
stop = ((l+1)*30-10)*bohr
r = numpy.arange(start,stop,step)
y = odeint(s_e,y0,r,args=(l,E))
return y
def inormalise_e(l,E,start=0.001,stop=None,step=(0.005*bohr)):
if stop is None:
stop = ((l+1)*30-10)*bohr
r = numpy.arange(start,stop,step)
f = i_s_e(l,E,start,stop,step)[:,0]
f2 = f**2
area = numpy.trapz(f2,x=r)
return f/(numpy.sqrt(area))
def inodes_e(l,E,start=0.001,stop=None,step=(0.005*bohr)):
if stop is None:
stop = ((l+1)*30-10)*bohr
x = i_s_e(l,E,start,stop,step)
r = numpy.arange(start,stop,step)
k=0
for i in range(len(r)-1):
if x[i,0]*x[i+1,0] < 0: #If u value times next u value <0,
k+=1 #crossing of u=0 has occured, therefore count node
return k
def iturns_e(l,E,start=0.001,stop=None,step=(0.005*bohr)):
if stop is None:
stop = ((l+1)*30-10)*bohr
x = i_s_e(l,E,start,stop,step)
r = numpy.arange(start,stop,step)
k = 0
for i in range(len(r)-1):
if x[i,1]*x[i+1,1] < 0: #If du/dr value times next du/dr value <0,
k=k+1 #crossing of du/dr=0, therefore a maximum/minimum
return k
l = 0
while l < 10: #The ground state for a system with a non-zero angular momentum will
E1 = -1.5e-08 #be the energy level of principle quantum number l-1, therefore
E3 = 0 #by changing l, we can find n by searching for the ground state
E2 = 0.5*(E1+E3)
i = 0
while i < 40:
N1 = inodes_e(l,E1)
N2 = inodes_e(l,E2)
N3 = inodes_e(l,E3)
T1 = iturns_e(l,E1)
T2 = iturns_e(l,E2)
T3 = iturns_e(l,E3)
if N1 != N2:# and T1 != T2: #Looks in lower half first, therefore will tend to ground state
E3 = E2
E2 = 0.5*(E1+E3)
elif N2 != N3:# and T2 != T3:
E1 = E2
E2 = 0.5*(E1+E3)
else:
print "Can't find satisfactory E in range"
break
i += 1
x = inormalise_e(l,E2)
if x[((l+1)**2)/0.005] > (x[2*((l+1)**2)/0.005]) and iturns_e(l,E2+1e-20)==1:
print 'Energy of state: n =',(l+1),'is: ',(E2*(10**9)),'eV'
l += 1
else:
E1 = E2+10e-20
答案 0 :(得分:0)
我不确切知道您的代码究竟出了什么问题,而且我不完全确定您的while i<40:
循环正在做什么,所以如果我错了,也许您可以更正以下内容。
如果您想为此系统使用某个n, l
的波函数,您可以将能量计算为E = RH / n ^ 2,其中RH是里德堡常数,因此您无需计算节点数。如果您确实需要对节点进行计数,那么与(n,l)
对应的数字为n-l-1
,因此您可以改变E并观察固定l的节点数量变化。
主要问题,在我看来,你的r范围不够大,无法涵盖所有节点(大n~l),odeint
不知道要远离其他(非物理)渐近解,psi~exp(+ cr),所以在某些条件下将psi发送到±无穷大的r。
如果它有用的话,我就想到了找到SE方程的数值解法:你需要根据r
来改变n,l
- 范围但是要避免上述问题(例如,如果您要求n, l = 10, 9
,请查看会发生什么。)
import numpy as np
import scipy as sp
from scipy.integrate import odeint
m_e, m_p, hbar = sp.constants.m_e, sp.constants.m_p, sp.constants.hbar
mu_e = m_e*m_p/(m_e + m_p)
bohr = sp.constants.physical_constants['Bohr radius'][0]
Rinfhc = sp.constants.physical_constants['Rydberg constant times hc in J'][0]
RHhc = Rinfhc * mu_e / m_e
fac = sp.constants.e**2/4/sp.pi/sp.constants.epsilon_0
def V(r):
return -fac/r
def deriv(y, r, l, E):
y1, y2 = y
dy1dr = y2
dy2dr = -2*y2/r - (2*mu_e/hbar**2*(E - V(r)) - l*(l+1)/r**2)*y1
return dy1dr, dy2dr
def solveSE(l, E, y0):
rstep = 0.001 * bohr
rmin = rstep
rmax = 200*l * bohr #
r = np.arange(rmin, rmax, rstep)
y, dydt = odeint(deriv, y0, r, args=(l,E)).T
return r, y, dydt
n = 10
l = 2
y0 = (bohr, -bohr)
E = -RHhc / n**2
r, psi, dpsi_dr = solveSE(l, E, y0)
import pylab
pylab.plot(r, psi)
pylab.show()