Stream没有last()
方法:
Stream<T> stream;
T last = stream.last(); // No such method
获取最后一个元素的最优雅和/或最有效的方法是什么(对于空流来说是null)?
答案 0 :(得分:109)
执行简化返回当前值的缩减:
Stream<T> stream;
T last = stream.reduce((a, b) -> b).orElse(null);
答案 1 :(得分:36)
这在很大程度上取决于Stream
的性质。请记住,“简单”并不一定意味着“有效”。如果您怀疑流非常大,进行大量操作或拥有事先知道大小的源,则以下内容可能比简单解决方案更有效:
static <T> T getLast(Stream<T> stream) {
Spliterator<T> sp=stream.spliterator();
if(sp.hasCharacteristics(Spliterator.SIZED|Spliterator.SUBSIZED)) {
for(;;) {
Spliterator<T> part=sp.trySplit();
if(part==null) break;
if(sp.getExactSizeIfKnown()==0) {
sp=part;
break;
}
}
}
T value=null;
for(Iterator<T> it=recursive(sp); it.hasNext(); )
value=it.next();
return value;
}
private static <T> Iterator<T> recursive(Spliterator<T> sp) {
Spliterator<T> prev=sp.trySplit();
if(prev==null) return Spliterators.iterator(sp);
Iterator<T> it=recursive(sp);
if(it!=null && it.hasNext()) return it;
return recursive(prev);
}
您可以通过以下示例说明不同之处:
String s=getLast(
IntStream.range(0, 10_000_000).mapToObj(i-> {
System.out.println("potential heavy operation on "+i);
return String.valueOf(i);
}).parallel()
);
System.out.println(s);
它将打印:
potential heavy operation on 9999999
9999999
换句话说,它没有对前9999999个元素执行操作,只对最后一个元素执行操作。
答案 2 :(得分:6)
这只是Holger答案的重构,因为代码虽然很棒,但有点难以阅读/理解,特别是对于那些在Java之前不是C程序员的人。希望我重构的示例类对于那些不熟悉分裂者,他们做什么或者如何工作的人来说更容易理解。
public class LastElementFinderExample {
public static void main(String[] args){
String s = getLast(
LongStream.range(0, 10_000_000_000L).mapToObj(i-> {
System.out.println("potential heavy operation on "+i);
return String.valueOf(i);
}).parallel()
);
System.out.println(s);
}
public static <T> T getLast(Stream<T> stream){
Spliterator<T> sp = stream.spliterator();
if(isSized(sp)) {
sp = getLastSplit(sp);
}
return getIteratorLastValue(getLastIterator(sp));
}
private static boolean isSized(Spliterator<?> sp){
return sp.hasCharacteristics(Spliterator.SIZED|Spliterator.SUBSIZED);
}
private static <T> Spliterator<T> getLastSplit(Spliterator<T> sp){
return splitUntil(sp, s->s.getExactSizeIfKnown() == 0);
}
private static <T> Iterator<T> getLastIterator(Spliterator<T> sp) {
return Spliterators.iterator(splitUntil(sp, null));
}
private static <T> T getIteratorLastValue(Iterator<T> it){
T result = null;
while (it.hasNext()){
result = it.next();
}
return result;
}
private static <T> Spliterator<T> splitUntil(Spliterator<T> sp, Predicate<Spliterator<T>> condition){
Spliterator<T> result = sp;
for (Spliterator<T> part = sp.trySplit(); part != null; part = result.trySplit()){
if (condition == null || condition.test(result)){
result = part;
}
}
return result;
}
}
答案 3 :(得分:1)
这是另一种解决方案(效率不高):
List<String> list = Arrays.asList("abc","ab","cc");
long count = list.stream().count();
list.stream().skip(count-1).findFirst().ifPresent(System.out::println);
答案 4 :(得分:1)
使用'skip'方法的并行未大小的流是棘手的,@ Holger的实现给出了错误的答案。另外@ Holger的实现有点慢,因为它使用了迭代器。
优化@Holger答案:
public static <T> Optional<T> last(Stream<? extends T> stream) {
Objects.requireNonNull(stream, "stream");
Spliterator<? extends T> spliterator = stream.spliterator();
Spliterator<? extends T> lastSpliterator = spliterator;
// Note that this method does not work very well with:
// unsized parallel streams when used with skip methods.
// on that cases it will answer Optional.empty.
// Find the last spliterator with estimate size
// Meaningfull only on unsized parallel streams
if(spliterator.estimateSize() == Long.MAX_VALUE) {
for (Spliterator<? extends T> prev = spliterator.trySplit(); prev != null; prev = spliterator.trySplit()) {
lastSpliterator = prev;
}
}
// Find the last spliterator on sized streams
// Meaningfull only on parallel streams (note that unsized was transformed in sized)
for (Spliterator<? extends T> prev = lastSpliterator.trySplit(); prev != null; prev = lastSpliterator.trySplit()) {
if (lastSpliterator.estimateSize() == 0) {
lastSpliterator = prev;
break;
}
}
// Find the last element of the last spliterator
// Parallel streams only performs operation on one element
AtomicReference<T> last = new AtomicReference<>();
lastSpliterator.forEachRemaining(last::set);
return Optional.ofNullable(last.get());
}
使用junit 5进行单元测试:
@Test
@DisplayName("last sequential sized")
void last_sequential_sized() throws Exception {
long expected = 10_000_000L;
AtomicLong count = new AtomicLong();
Stream<Long> stream = LongStream.rangeClosed(1, expected).boxed();
stream = stream.skip(50_000).peek(num -> count.getAndIncrement());
assertThat(Streams.last(stream)).hasValue(expected);
assertThat(count).hasValue(9_950_000L);
}
@Test
@DisplayName("last sequential unsized")
void last_sequential_unsized() throws Exception {
long expected = 10_000_000L;
AtomicLong count = new AtomicLong();
Stream<Long> stream = LongStream.rangeClosed(1, expected).boxed();
stream = StreamSupport.stream(((Iterable<Long>) stream::iterator).spliterator(), stream.isParallel());
stream = stream.skip(50_000).peek(num -> count.getAndIncrement());
assertThat(Streams.last(stream)).hasValue(expected);
assertThat(count).hasValue(9_950_000L);
}
@Test
@DisplayName("last parallel sized")
void last_parallel_sized() throws Exception {
long expected = 10_000_000L;
AtomicLong count = new AtomicLong();
Stream<Long> stream = LongStream.rangeClosed(1, expected).boxed().parallel();
stream = stream.skip(50_000).peek(num -> count.getAndIncrement());
assertThat(Streams.last(stream)).hasValue(expected);
assertThat(count).hasValue(1);
}
@Test
@DisplayName("getLast parallel unsized")
void last_parallel_unsized() throws Exception {
long expected = 10_000_000L;
AtomicLong count = new AtomicLong();
Stream<Long> stream = LongStream.rangeClosed(1, expected).boxed().parallel();
stream = StreamSupport.stream(((Iterable<Long>) stream::iterator).spliterator(), stream.isParallel());
stream = stream.peek(num -> count.getAndIncrement());
assertThat(Streams.last(stream)).hasValue(expected);
assertThat(count).hasValue(1);
}
@Test
@DisplayName("last parallel unsized with skip")
void last_parallel_unsized_with_skip() throws Exception {
long expected = 10_000_000L;
AtomicLong count = new AtomicLong();
Stream<Long> stream = LongStream.rangeClosed(1, expected).boxed().parallel();
stream = StreamSupport.stream(((Iterable<Long>) stream::iterator).spliterator(), stream.isParallel());
stream = stream.skip(50_000).peek(num -> count.getAndIncrement());
// Unfortunately unsized parallel streams does not work very well with skip
//assertThat(Streams.last(stream)).hasValue(expected);
//assertThat(count).hasValue(1);
// @Holger implementation gives wrong answer!!
//assertThat(Streams.getLast(stream)).hasValue(9_950_000L); //!!!
//assertThat(count).hasValue(1);
// This is also not a very good answer better
assertThat(Streams.last(stream)).isEmpty();
assertThat(count).hasValue(0);
}
支持这两种情况的唯一解决方案是避免在未规划的并行流上检测到最后一个分裂器。结果是解决方案将对所有元素执行操作,但它将始终给出正确的答案。
请注意,在顺序流中,无论如何都会对所有元素执行操作。
public static <T> Optional<T> last(Stream<? extends T> stream) {
Objects.requireNonNull(stream, "stream");
Spliterator<? extends T> spliterator = stream.spliterator();
// Find the last spliterator with estimate size (sized parallel streams)
if(spliterator.hasCharacteristics(Spliterator.SIZED|Spliterator.SUBSIZED)) {
// Find the last spliterator on sized streams (parallel streams)
for (Spliterator<? extends T> prev = spliterator.trySplit(); prev != null; prev = spliterator.trySplit()) {
if (spliterator.getExactSizeIfKnown() == 0) {
spliterator = prev;
break;
}
}
}
// Find the last element of the spliterator
//AtomicReference<T> last = new AtomicReference<>();
//spliterator.forEachRemaining(last::set);
//return Optional.ofNullable(last.get());
// A better one that supports native parallel streams
return (Optional<T>) StreamSupport.stream(spliterator, stream.isParallel())
.reduce((a, b) -> b);
}
关于该实现的单元测试,前三个测试完全相同(顺序和大小并行)。未规划并行的测试在这里:
@Test
@DisplayName("last parallel unsized")
void last_parallel_unsized() throws Exception {
long expected = 10_000_000L;
AtomicLong count = new AtomicLong();
Stream<Long> stream = LongStream.rangeClosed(1, expected).boxed().parallel();
stream = StreamSupport.stream(((Iterable<Long>) stream::iterator).spliterator(), stream.isParallel());
stream = stream.peek(num -> count.getAndIncrement());
assertThat(Streams.last(stream)).hasValue(expected);
assertThat(count).hasValue(10_000_000L);
}
@Test
@DisplayName("last parallel unsized with skip")
void last_parallel_unsized_with_skip() throws Exception {
long expected = 10_000_000L;
AtomicLong count = new AtomicLong();
Stream<Long> stream = LongStream.rangeClosed(1, expected).boxed().parallel();
stream = StreamSupport.stream(((Iterable<Long>) stream::iterator).spliterator(), stream.isParallel());
stream = stream.skip(50_000).peek(num -> count.getAndIncrement());
assertThat(Streams.last(stream)).hasValue(expected);
assertThat(count).hasValue(9_950_000L);
}
答案 5 :(得分:1)
番石榴有Streams.findLast:
NULL
答案 6 :(得分:1)
我们在生产中需要last
的Stream-我仍然不确定我们确实做到了,但是团队中的各个团队成员表示我们这样做是由于各种“原因”。我最终写了这样的东西:
private static class Holder<T> implements Consumer<T> {
T t = null;
// needed to null elements that could be valid
boolean set = false;
@Override
public void accept(T t) {
this.t = t;
set = true;
}
}
/**
* when a Stream is SUBSIZED, it means that all children (direct or not) are also SIZED and SUBSIZED;
* meaning we know their size "always" no matter how many splits are there from the initial one.
* <p>
* when a Stream is SIZED, it means that we know it's current size, but nothing about it's "children",
* a Set for example.
*/
private static <T> Optional<Optional<T>> last(Stream<T> stream) {
Spliterator<T> suffix = stream.spliterator();
// nothing left to do here
if (suffix.getExactSizeIfKnown() == 0) {
return Optional.empty();
}
return Optional.of(Optional.ofNullable(compute(suffix, new Holder())));
}
private static <T> T compute(Spliterator<T> sp, Holder holder) {
Spliterator<T> s;
while (true) {
Spliterator<T> prefix = sp.trySplit();
// we can't split any further
// BUT don't look at: prefix.getExactSizeIfKnown() == 0 because this
// does not mean that suffix can't be split even more further down
if (prefix == null) {
s = sp;
break;
}
// if prefix is known to have no elements, just drop it and continue with suffix
if (prefix.getExactSizeIfKnown() == 0) {
continue;
}
// if suffix has no elements, try to split prefix further
if (sp.getExactSizeIfKnown() == 0) {
sp = prefix;
}
// after a split, a stream that is not SUBSIZED can give birth to a spliterator that is
if (sp.hasCharacteristics(Spliterator.SUBSIZED)) {
return compute(sp, holder);
} else {
// if we don't know the known size of suffix or prefix, just try walk them individually
// starting from suffix and see if we find our "last" there
T suffixResult = compute(sp, holder);
if (!holder.set) {
return compute(prefix, holder);
}
return suffixResult;
}
}
s.forEachRemaining(holder::accept);
// we control this, so that Holder::t is only T
return (T) holder.t;
}
它的一些用法:
Stream<Integer> st = Stream.concat(Stream.of(1, 2), Stream.empty());
System.out.println(2 == last(st).get().get());
st = Stream.concat(Stream.empty(), Stream.of(1, 2));
System.out.println(2 == last(st).get().get());
st = Stream.concat(Stream.iterate(0, i -> i + 1), Stream.of(1, 2, 3));
System.out.println(3 == last(st).get().get());
st = Stream.concat(Stream.iterate(0, i -> i + 1).limit(0), Stream.iterate(5, i -> i + 1).limit(3));
System.out.println(7 == last(st).get().get());
st = Stream.concat(Stream.iterate(5, i -> i + 1).limit(3), Stream.iterate(0, i -> i + 1).limit(0));
System.out.println(7 == last(st).get().get());
String s = last(
IntStream.range(0, 10_000_000).mapToObj(i -> {
System.out.println("potential heavy operation on " + i);
return String.valueOf(i);
}).parallel()
).get().get();
System.out.println(s.equalsIgnoreCase("9999999"));
st = Stream.empty();
System.out.println(last(st).isEmpty());
st = Stream.of(1, 2, 3, 4, null);
System.out.println(last(st).get().isEmpty());
st = Stream.of((Integer) null);
System.out.println(last(st).isPresent());
IntStream is = IntStream.range(0, 4).filter(i -> i != 3);
System.out.println(last(is.boxed()));
首先是Optional<Optional<T>>
的返回类型-我同意,它看起来很奇怪。如果第一个Optional
为空,则表示流中没有元素;如果第二个Optional为空,则表示最后一个元素实际上是null
,即:Stream.of(1, 2, 3, null)
(与guava
的{{1}}引发异常)不同,一个案例)。
我承认我的主要灵感来自霍尔格(Holger)关于我的问题和番石榴Streams::findLast
的答案。