为了图像(体积)配准,我想应用窗口函数来输入数据,这样非周期性图像边界不会在FFT中产生条纹。我正在使用这里的示例来获取2D数据:
http://mail.scipy.org/pipermail/numpy-discussion/2008-July/036112.html
h = scipy.signal.hamming(n)
ham2d = sqrt(outer(h,h))
这可以扩展到3D甚至是N-D吗?
答案 0 :(得分:2)
以下是我提出的代码(来自scikit-image团队的修订帮助):
def _nd_window(data, filter_function):
"""
Performs an in-place windowing on N-dimensional spatial-domain data.
This is done to mitigate boundary effects in the FFT.
Parameters
----------
data : ndarray
Input data to be windowed, modified in place.
filter_function : 1D window generation function
Function should accept one argument: the window length.
Example: scipy.signal.hamming
"""
for axis, axis_size in enumerate(data.shape):
# set up shape for numpy broadcasting
filter_shape = [1, ] * data.ndim
filter_shape[axis] = axis_size
window = filter_function(axis_size).reshape(filter_shape)
# scale the window intensities to maintain image intensity
np.power(window, (1.0/data.ndim), output=window)
data *= window