Johnson's paper开始在有向图中描述不同的基本电路(简单周期):
如果没有顶点,则电路是基本的,但第一个和最后一个出现两次。如果一个不是另一个的循环置换,则两个基本电路是不同的。 G
中有c个不同的基本电路
我试图拼凑出一些模糊地类似于伪代码的东西,有点像networkx和Java implementation那样严重作弊。我显然没有得到明显的基本电路。
这是我的代码。它使用goraph library,但除了获得强连接组件之外,它并没有真正做太多。
package main
import (
"fmt"
"github.com/gyuho/goraph/algorithm/scc/tarjan"
"github.com/gyuho/goraph/graph/gs"
)
func main() {
gr := gs.NewGraph()
a := gr.CreateAndAddToGraph("A")
b := gr.CreateAndAddToGraph("B")
c := gr.CreateAndAddToGraph("C")
d := gr.CreateAndAddToGraph("D")
e := gr.CreateAndAddToGraph("E")
f := gr.CreateAndAddToGraph("F")
gr.Connect(a, b, 1)
gr.Connect(b, c, 1)
gr.Connect(c, a, 1)
gr.Connect(d, e, 1)
gr.Connect(e, f, 1)
gr.Connect(f, d, 1)
sccs := tarjan.SCC(gr) // returns [][]string
for _, scc := range sccs {
if len(scc) < 3 {
continue
}
for _, v := range scc {
n := node(v)
circuit(n, n, gr)
}
}
fmt.Println(result)
}
type node string
var blocked = make(map[node]bool)
var B = make(map[node][]node)
var path []node
var result [][]node
func circuit(thisNode node, startNode node, g *gs.Graph) bool {
closed := false
path = append(path, thisNode)
blocked[thisNode] = true
adj := g.FindVertexByID(string(thisNode)).GetOutVertices().GetElements()
for _, next := range adj {
nextNode := node(next.(*gs.Vertex).ID)
if nextNode == startNode {
cycle := []node{}
cycle = append(cycle, path...)
cycle = append(cycle, startNode)
result = append(result, cycle)
closed = true
} else if !blocked[nextNode] {
if circuit(nextNode, startNode, g) {
closed = true
}
}
}
if closed {
unblock(thisNode)
} else {
adj = g.FindVertexByID(string(thisNode)).GetOutVertices().GetElements()
for _, next := range adj {
nextNode := node(next.(*gs.Vertex).ID)
inB := false
for _, v := range B[nextNode] {
if v == thisNode {
inB = true
}
}
if !inB {
B[nextNode] = append(B[nextNode], thisNode)
}
}
}
path = path[:len(path)-1]
return closed
}
func unblock(thisNode node) {
stack := []node{thisNode}
for len(stack) > 0 {
n := stack[len(stack)-1]
stack = stack[:len(stack)-1]
if blocked[n] {
blocked[n] = false
stack = append(stack, B[n]...)
B[n] = []node{}
}
}
}
这是输出:
[[C A B C] [B C A B] [A B C A] [F D E F] [E F D E] [D E F D]]
图论是一个充满魔力的幽灵般的黑暗森林,所以我不确定我错过了什么。我误读了这篇论文吗?是否暗示冗余排列应该以其他方式过滤掉?我搞砸了代码吗?
答案 0 :(得分:2)
过滤掉了冗余排列,因为每个返回排列的起始节点总是小于所有剩余元素(在某种排序下)。
我怀疑问题在于缺少这些步骤的实现:
AK:=具有最小顶点的强分量K的邻接结构 由{s,s + 1,n}引起的G子图;
和
s:= V中的最小顶点;
这些步骤应该确保每个排列的开始总是小于排列的其余部分,但我看不到代码来实现它,而是你似乎遍历强连接组件中的每个节点。