MATLAB中灰度图像的圆检测

时间:2014-11-27 13:08:58

标签: matlab image-processing geometry

我的图像如下所示。我的目标是检测第二张图像中显示的圆圈。我使用了[centers,radii] = imfindcircles(IM,[100 300]);,却一无所获。

还有其他方法来检测圆圈吗?我怎么能这样做?

原始图片: enter image description here

圆圈:我画了油漆。 enter image description here

2 个答案:

答案 0 :(得分:6)

这是imfindcircles的替代解决方案。基本上对图像进行阈值处理,使用磁盘结构元素对其进行扩展,然后在找到边缘后,使用文件交换here中可用的circle_hough算法应用Hough变换来检测圆。

以下是代码:

clear
clc
close all

A = imread('CircleIm.jpg');

%// Some pre-processing. Treshold image and dilate it.
B = im2bw(A,.85);

se = strel('disk',2);

C = imdilate(B,se);

D = bwareaopen(C,10000);

%// Here imfill is not necessary but you might find it useful in other situations.
E = imfill(D,'holes');

%// Detect edges
F = edge(E);

%// circle_hough from the File Exchange.

%// This code is based on Andrey's answer here:
%https://dsp.stackexchange.com/questions/5930/find-circle-in-noisy-data.

%// Generate range of radii.
 radii = 200:10:250;

h = circle_hough(F, radii,'same');
[~,maxIndex] = max(h(:));
[i,j,k] = ind2sub(size(h), maxIndex);
radius = radii(k);
center.x = j;
center.y = i;

%// Generate circle to overlay
N = 200;

theta=linspace(0,2*pi,N);
rho=ones(1,N)*radius;

%Cartesian coordinates
[X,Y] = pol2cart(theta,rho); 

figure;

subplot(2,2,1)
imshow(B);
title('Thresholded image  (B)','FontSize',16)

subplot(2,2,2)
imshow(E);
title('Filled image (E)','FontSize',16)

subplot(2,2,3)
imshow(F);hold on

plot(center.x-X,center.y-Y,'r-','linewidth',2);

title('Edge image + circle (F)','FontSize',16)

subplot(2,2,4)
imshow(A);hold on
plot(center.x-X,center.y-Y,'r-','linewidth',2);
title('Original image + circle (A)','FontSize',16)

其中包含以下内容:

enter image description here

您可以使用传递给阈值的参数或扩大参数来查看它对结果的影响。

希望有所帮助!

答案 1 :(得分:2)

这是解决此问题的另一种方法。它不是基于霍夫变换,因为imfindcircles和以前的答案都是。

基本上:

  1. 对图像进行分割(使用Otsu方法估算阈值)
  2. 查找已连接的组件,只留下2%的组件,从区域较大的组件开始
  3. 用小半径的圆圈(圆盘)扩大图像
  4. 再次查找已连接的组件,并将具有最大区域的组件作为圆圈
  5. HT有时会很慢,具体取决于输入数据的大小和分辨率。比较两种方法(HT,非HT)的执行时间可能是有用的。

    所提出的方法还可以检测另一种形状的物体(非圆形)。

    function[circle] = ipl_find_circle(I)
    
    % NOTE: I is assumed to be a grayscale image
    
    % Step 1: Segment image using Otsu´s method
    t = graythresh(I); 
    BW = im2bw(I, t); 
    
    % Step 2: Leave just "big" components on binary image
    [L, num] = bwlabel(BW); 
    stats = regionprops(L, 'Area', 'PixelIdxList');
    area_vector = [stats(:).Area];
    area_vector = sort(area_vector);
    threshold_pos = floor(num * 0.98);
    threshold = area_vector(threshold_pos);
    
    for i=1:num
        if(stats(i).Area < threshold)
            BW(stats(i).PixelIdxList) = false;
        end
    end
    
    % Step 3: Dilate image with a circle of small radius
    str = strel('disk', 5); 
    BW = imdilate(BW, str); 
    
    % Step 4: Take component with biggest area as the circle
    L = bwlabel(BW); 
    stats = regionprops(L, 'Area', 'BoundingBox', 'Centroid', 'EquivDiameter');
    area_vector = [stats(:).Area];
    [max_value, max_idx] = max(area_vector);
    soi = stats(max_idx);
    
    % Set output variable
    circle = imcrop(I, soi.BoundingBox);
    
    % Display results
    radius = soi.EquivDiameter/2;
    N = 1000;
    theta = linspace(0, 2*pi, N);
    rho = ones(1, N) * radius;
    [X,Y] = pol2cart(theta, rho);
    X = soi.Centroid(1) - X;
    Y = soi.Centroid(2) - Y;
    
    figure; 
    subplot(1,2,1);
    imshow(I);
    hold on;
    plot(X, Y, '-r', 'LineWidth', 2);
    title('Original graycale image + circle', 'FontSize', 12)
    
    subplot(1,2,2);
    imshow(circle);
    title('Circle region', 'FontSize', 12);
    
    end