如何使用最小二乘法与权重矩阵?

时间:2014-11-25 13:59:00

标签: python numpy matrix least-squares

我知道如何使用Python通过最小二乘法解决A.X = B:

示例:

A=[[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,0,0]]
B=[1,1,1,1,1]
X=numpy.linalg.lstsq(A, B)
print X[0]
# [  5.00000000e-01   5.00000000e-01  -1.66533454e-16  -1.11022302e-16]

但是如果用权重矩阵不是身份来解决这个相同的等式呢:

A.X = B (W)

示例:

A=[[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,0,0]]
B=[1,1,1,1,1]
W=[1,2,3,4,5]

3 个答案:

答案 0 :(得分:8)

我不知道您如何定义权重,但如果合适,您可以尝试这样做:

import numpy as np
A=np.array([[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,0,0]])
B = np.array([1,1,1,1,1])
W = np.array([1,2,3,4,5])
Aw = A * np.sqrt(W[:,np.newaxis])
Bw = B * np.sqrt(W)
X = np.linalg.lstsq(Aw, Bw)

答案 1 :(得分:5)

我发现了另一种方法(使用W作为对角矩阵和matricial产品):

A=[[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,0,0]]
B = [1,1,1,1,1]
W = [1,2,3,4,5]
W = np.sqrt(np.diag(W))
Aw = np.dot(W,A)
Bw = np.dot(B,W)
X = np.linalg.lstsq(Aw, Bw)

相同的值和相同的结果。

答案 2 :(得分:0)

scikit软件包直接提供加权回归。 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression.fit

import numpy as np
# generate random data
N = 25
xp = [-5.0, 5.0]
x = np.random.uniform(xp[0],xp[1],(N,1))
e = 2*np.random.randn(N,1)
y = 2*x+e
w = np.ones(N)

# make the 3rd one outlier
y[2] += 30.0
w[2] = 0.0

from sklearn.linear_model import LinearRegression
# fit WLS using sample_weights
WLS = LinearRegression()
WLS.fit(x, y, sample_weight=w)

from matplotlib import pyplot as plt
plt.plot(x,y, '.')
plt.plot(xp, xp*WLS.coef_[0])
plt.show()

weighted regression without outlier