我正在尝试使用Minoru3D立体相机生成点云,但它不起作用。
生成的点肯定不正确。
相机已正确校准。
我纠正的图像(rec1,rec2),视差图(disp)和深度图(深度):
点云:
我使用reprojectImageTo3D创建深度图像,然后读取每个像素的点。
完整代码:
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/contrib/contrib.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include "libcam.h"
#include <stdio.h>
#include <fstream>
using namespace cv;
using namespace std;
int main(int argc, char** argv) {
// The camera properties
int w = 640;
int h = 480;
int fps = 20;
// The images, which are proceeded
Mat img1, img2;
// The grayscale versions of the images
Mat gray1, gray2;
// The disparity and depth map
Mat disparity;
Mat depth(Size(h, w), CV_32FC3);
// The iplImage versions of the images used to get the images from the camera
IplImage *iplImg1 = cvCreateImage(cvSize(w, h), 8, 3), *iplImg2 = cvCreateImage(cvSize(w, h), 8, 3);
// The cameras
Camera cam1("/dev/video0", w, h, fps), cam2("/dev/video1", w, h, fps);
// Load the camera model
Mat CM1, CM2, D1, D2, R, T, E, F, R1, R2, P1, P2, Q;
FileStorage fs("data/stereocalib.yml", FileStorage::READ);
fs["CM1"] >> CM1;
fs["CM2"] >> CM2;
fs["D1"] >> D1;
fs["D2"] >> D2;
fs["R"] >> R;
fs["T"] >> T;
fs["E"] >> E;
fs["F"] >> F;
fs["R1"] >> R1;
fs["R2"] >> R2;
fs["P1"] >> P1;
fs["P2"] >> P2;
fs["Q"] >> Q;
fs.release();
Mat map1x = Mat(h, w, CV_32F);
Mat map1y = Mat(h, w, CV_32F);
Mat map2x = Mat(h, w, CV_32F);
Mat map2y = Mat(h, w, CV_32F);
initUndistortRectifyMap(CM1, D1, R1, P1, cvSize(w, h), CV_32FC1, map1x, map1y);
initUndistortRectifyMap(CM2, D2, R2, P2, cvSize(w, h), CV_32FC1, map2x, map2y);
// The rectified images
Mat imgU1 = Mat(img1.size(), img1.type()), imgU2 = Mat(img2.size(), img2.type());
Ptr<StereoBM> sbm = createStereoBM(16 * 10, 5);
while (true) {
// Get the images from the cameras
cam1.Update();
cam2.Update();
cam1.toIplImage(iplImg1);
cam2.toIplImage(iplImg2);
img1 = cvarrToMat(iplImg1);
img2 = cvarrToMat(iplImg2);
// Rectify
remap(img1, imgU1, map1x, map1y, INTER_LINEAR, BORDER_CONSTANT, Scalar());
remap(img2, imgU2, map2x, map2y, INTER_LINEAR, BORDER_CONSTANT, Scalar());
// Convert the rectified images to grayscale images
cvtColor(imgU1, gray1, CV_BGR2GRAY);
cvtColor(imgU2, gray2, CV_BGR2GRAY);
// Create disparity map
sbm->compute(gray1, gray2, disparity);
// Create depth map
reprojectImageTo3D(disparity, depth, Q, true, CV_32F);
//imshow("img1", img1);
//imshow("img2", img2);
imshow("rec1", gray1);
imshow("rec2", gray2);
imshow("disp", disparity);
imshow("depth", depth);
int key = waitKey(10);
if (key == 'q') {
break;
}
else if (key == 's') {
stringstream output;
for (int x = 0; x < img1.rows; x++) {
for (int y = 0; y < img1.cols; y++) {
Point3f p = depth.at<Point3f>(x, y);
if(p.z >= 10000) continue; // Filter errors
output << p.x << "," << p.y << "," << p.z << endl;
}
}
ofstream outputFile("points");
outputFile << output.str();
outputFile.close();
cout << "saved" << endl;
}
else if (key == 'p') {
waitKey(0);
}
}
destroyAllWindows();
return 0;
}