给定一个整数数组A
和一个整数值K
,创建数组B
,其中B[i]
是子数组A[i], A[i+1], ..., A[i+K-1]
中的最小值1}}。请注意,B.length
将等于A.length - K
。
例如,对于K = 3
和A=[1,2,3,4,0,1,2]
,解决方案为B=[1,2,0,0,0]
。
A = [1,2,3,4,0,1,2]
_____| | | | |
B[1] = 1 | | | |
_____| | | |
B[2] = 2 | | |
_____| | |
B[3] = 0 | |
_____| |
B[4] = 0 |
_____|
B[5] = 0
O(kn)时间复杂度的解决方案如下:
public static int[] createArray(int[] arr, int k) {
int[] result = new int[arr.length];
for (int i = 0; i <= arr.length - k; i++) {
int curSmallestVal = arr[i];
for (int j = i + 1; j < i + k; j++) {
curSmallestVal = Math.min(curSmallestVal, arr[j]);
}
result[i] = curSmallestVal;
}
return result;
}
你能用O(n)运行时提供更优雅的解决方案吗? (可能使用队列)
使用O(n)解决方案进行更新:
public static int[] getMinSlidingWindow(int[] arr, int k) {
int[] result = new int[arr.length-k+1];
Deque<Integer> queue = new LinkedList<Integer>();
//initialize sliding window
for (int i = 0; i < k; i++) {
if (!queue.isEmpty() && arr[queue.getLast()] >= arr[i])
queue.removeLast();
queue.addLast(i);
}
for (int i = k; i < arr.length; i++) {
result[i-k] = arr[queue.getFirst()];
while (!queue.isEmpty() && arr[queue.getLast()] >= arr[i])
queue.removeLast();
queue.addLast(i);
while (!queue.isEmpty() && queue.getFirst() <= i-k)
queue.removeFirst();
}
result[arr.length-k] = arr[queue.removeFirst()];
return result;
}
答案 0 :(得分:2)
使用具有双端队列的标准滑动窗口最小算法可以实现O(n)
时间复杂度。以下是详细说明:http://people.cs.uct.ac.za/~ksmith/articles/sliding_window_minimum.html
答案 1 :(得分:1)
我想到的第一个想法是使用两套。两个集都存储std::pair<index_t,value_t>
但具有不同的顺序。 (一个按索引排序,一个按值排序)。通过这种方式,您可以在每个步骤中迭代通过数组查找最小值(按值排序的集合中的第一个元素)以及从两个集合中删除的元素/对(按索引排序的集合中的第一个元素)。在每个步骤中,您在每个集合中添加对,并从每个集合中删除对。
答案 2 :(得分:1)
使用双端队列(支持从前端和后端添加推送和弹出的队列)和一些额外的逻辑,您可以构建一个运行O(n)的解决方案。
这是解决方案的伪代码。
void getMaxSlidingWindow(int[] A, int k) {
int[] B = new int[A.length - k];
// Store the indexes of A in Q
// Q.front(): index of smallest element in the window, Q.back(): index of the largest one in the window
DobuleEndedQueue<int> Q = new DobuleEndedQueue<int>();
for(int i=0; i<k; i++) {
// Fill up the double ended queue for the first k elements
// Remove elements that we would ignore because they're bigger than the next one in the window
while(!Q.empty() && A[i] <= A[Q.back()]) {
Q.popBack();
}
Q.pushBack(i);
}
for(int i=k; i < A.length; i++) {
B[i - k] = A[Q.front()]; // The first element in the queue is the index of the smallest element in the window
// Add the current element to the queue. Before we do, remove all elements that we would ignore immediately because they're bigger than the current one
while(!Q.empty() && A[i] <= A[Q.back()] ) {
Q.popBack();
}
Q.pushToBack(i);
// Remove any index from the front of the queue which is no longer in the window
while(!Q.empty() && Q.front() <= i-k) {
Q.popFront();
}
}
B[A.length - k] = A[Q.front()];
}
此解决方案的时间复杂度是O(n):我们遍历所有元素一次,然后将它们添加或移除到双端队列一次。完成的最大操作是2n,这是O(n)复杂度。
要使此解决方案正常工作,您需要使用以下操作实现双端队列数据结构:
class DobuleEndedQueue
int front(), void pushFront(int n), void popFront() // peeks at the front element, adds and removes to the front
int back(), void pushBack(int n) , void popBack() // same for the back element
通过一个简单的例子进一步解释算法: