我正在尝试拟合最适合我的matplotlib图的线性线。我不断得到x和y没有相同的第一个维度的错误。但他们都有15个长度。我做错了什么?
import matplotlib.pyplot as plt
from scipy import stats
import numpy as np
x = [0.46,0.59,0.68,0.99,0.39,0.31,1.09,0.77,0.72,0.49,0.55,0.62,0.58,0.88,0.78]
y = [0.315,0.383,0.452,0.650,0.279,0.215,0.727,0.512,0.478,0.335,0.365,0.424,0.390,0.585,0.511]
xerr = [0.01]*15
yerr = [0.001]*15
plt.rc('font', family='serif', size=13)
m, b = np.polyfit(x, y, 1)
plt.plot(x,y,'s',color='#0066FF')
plt.plot(x, m*x + b, 'r-') #BREAKS ON THIS LINE
plt.errorbar(x,y,xerr=xerr,yerr=0,linestyle="None",color='black')
plt.xlabel('$\Delta t$ $(s)$',fontsize=20)
plt.ylabel('$\Delta p$ $(hPa)$',fontsize=20)
plt.autoscale(enable=True, axis=u'both', tight=False)
plt.grid(False)
plt.xlim(0.2,1.2)
plt.ylim(0,0.8)
plt.show()
答案 0 :(得分:34)
你应该制作x
和y
numpy数组,而不是列表:
x = np.array([0.46,0.59,0.68,0.99,0.39,0.31,1.09,
0.77,0.72,0.49,0.55,0.62,0.58,0.88,0.78])
y = np.array([0.315,0.383,0.452,0.650,0.279,0.215,0.727,0.512,
0.478,0.335,0.365,0.424,0.390,0.585,0.511])
通过此更改,它会生成预期图。如果它们是列表,m * x
将不会产生您期望的结果,而是一个空列表。请注意,m
是numpy.float64
标量,而非标准Python float
。
我实际上认为这是Numpy有点可疑的行为。在普通的Python中,将列表与整数相乘只重复列表:
In [42]: 2 * [1, 2, 3]
Out[42]: [1, 2, 3, 1, 2, 3]
将列表与float相乘会产生错误(我认为应该这样):
In [43]: 1.5 * [1, 2, 3]
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-43-d710bb467cdd> in <module>()
----> 1 1.5 * [1, 2, 3]
TypeError: can't multiply sequence by non-int of type 'float'
奇怪的是,将Python列表与Numpy标量相乘显然有效:
In [45]: np.float64(0.5) * [1, 2, 3]
Out[45]: []
In [46]: np.float64(1.5) * [1, 2, 3]
Out[46]: [1, 2, 3]
In [47]: np.float64(2.5) * [1, 2, 3]
Out[47]: [1, 2, 3, 1, 2, 3]
所以看起来float被截断为int,之后你会得到重复列表的标准Python行为,这是非常意外的行为。最好的办法是提出一个错误(这样你就可以自己发现问题,而不必在Stackoverflow上提出你的问题),或者只显示预期的逐元素乘法(你的代码将在其中运行) 。有趣的是,列表和Numpy标量之间的添加确实有效:
In [69]: np.float64(0.123) + [1, 2, 3]
Out[69]: array([ 1.123, 2.123, 3.123])
答案 1 :(得分:7)
将列表更改为numpy
阵列将完成工作!
import matplotlib.pyplot as plt
from scipy import stats
import numpy as np
x = np.array([0.46,0.59,0.68,0.99,0.39,0.31,1.09,0.77,0.72,0.49,0.55,0.62,0.58,0.88,0.78]) # x is a numpy array now
y = np.array([0.315,0.383,0.452,0.650,0.279,0.215,0.727,0.512,0.478,0.335,0.365,0.424,0.390,0.585,0.511]) # y is a numpy array now
xerr = [0.01]*15
yerr = [0.001]*15
plt.rc('font', family='serif', size=13)
m, b = np.polyfit(x, y, 1)
plt.plot(x,y,'s',color='#0066FF')
plt.plot(x, m*x + b, 'r-') #BREAKS ON THIS LINE
plt.errorbar(x,y,xerr=xerr,yerr=0,linestyle="None",color='black')
plt.xlabel('$\Delta t$ $(s)$',fontsize=20)
plt.ylabel('$\Delta p$ $(hPa)$',fontsize=20)
plt.autoscale(enable=True, axis=u'both', tight=False)
plt.grid(False)
plt.xlim(0.2,1.2)
plt.ylim(0,0.8)
plt.show()