考虑以下问题:
Issue in training hidden markov model and usage for classification
当我的输入数据(观察序列)是连续变量时,如何使用HMM,因此离散观测的数量是无限的?
是否可以将HMM用于此类连续数据?如果是这样,怎么样?
例如:从发布的问题中考虑以下代码:
Q = 3; %# number of states (sun,rain,fog)
O = 2; %# number of discrete observations (umbrella, no umbrella)
%# we start with a randomly initialized model
prior_hat = normalise(rand(Q,1));
A_hat = mk_stochastic(rand(Q,Q));
B_hat = mk_stochastic(rand(Q,O));
%# learn from data by performing many iterations of EM
[LL,prior_hat,A_hat,B_hat] = dhmm_em(seqs, prior_hat, A_hat, B_hat, 'max_iter',50);
如果我的观察序列(上面代码中未定义的seqs
)是一个连续变量,我该怎么办?
答案 0 :(得分:2)
对于具有连续排放的HMM模型,Mathworks团队基本上建议离散州的排放值并估计离散模型(http://www.mathworks.com/matlabcentral/answers/100850-how-can-i-use-continuous-sequence-values-with-hmmestimate-in-the-statistics-toolbox-7-1-r2009a)。