隐马尔可夫模型中的非离散观测

时间:2014-10-29 21:33:01

标签: matlab hidden-markov-models continuous

考虑以下问题:

Issue in training hidden markov model and usage for classification

当我的输入数据(观察序列)是连续变量时,如何使用HMM,因此离散观测的数量是无限的?

是否可以将HMM用于此类连续数据?如果是这样,怎么样?

例如:从发布的问题中考虑以下代码:

Q = 3;    %# number of states (sun,rain,fog)
O = 2;    %# number of discrete observations (umbrella, no umbrella)

%# we start with a randomly initialized model
prior_hat = normalise(rand(Q,1));
A_hat = mk_stochastic(rand(Q,Q));
B_hat = mk_stochastic(rand(Q,O));  

%# learn from data by performing many iterations of EM
[LL,prior_hat,A_hat,B_hat] = dhmm_em(seqs, prior_hat, A_hat, B_hat, 'max_iter',50);

如果我的观察序列(上面代码中未定义的seqs)是一个连续变量,我该怎么办?

1 个答案:

答案 0 :(得分:2)

对于具有连续排放的HMM模型,Mathworks团队基本上建议离散州的排放值并估计离散模型(http://www.mathworks.com/matlabcentral/answers/100850-how-can-i-use-continuous-sequence-values-with-hmmestimate-in-the-statistics-toolbox-7-1-r2009a)。