Fibonacci Sequence Mod 1000000007

时间:2014-10-18 16:27:49

标签: python

每个人都知道Fibonacci序列

F[0]=1, F[1]=1, F[2]=2, F[3]=3, F[4]=5, F[5]=8

F[n] = F[n-1]+F[n-2]

现在,如何以模数1000000007 = 10 ^ 9 + 7的方式计算Fibonacci序列中的数字?

需要尽可能高效地运行,并使用Python语言:)

例如F [10 ** 15]应该不到一秒左右

我知道矩阵取幂是有效的,但是你如何纠正Matrix Exponentiation以反映MODULO? (另一个例子,见http://www.nayuki.io/page/fast-fibonacci-algorithms

1 个答案:

答案 0 :(得分:1)

需要的技巧:

1)使用封闭形式的斐波纳契数,这比递归快得多。 http://mathworld.wolfram.com/FibonacciNumber.html(公式6)

2)模数本质上是乘法和加法的因素,以及除法之外的各种因素(你必须首先使用扩展的欧几里德算法计算mod空间中的乘法逆),所以你基本上可以随意调整。 https://en.wikipedia.org/wiki/Modulo_operation#Equivalencies https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Modular_integers

代码:

def rootiply(a1,b1,a2,b2,c):
    ''' multipy a1+b1*sqrt(c) and a2+b2*sqrt(c)... return a,b'''
    return a1*a2 + b1*b2*c, a1*b2 + a2*b1

def rootipower(a,b,c,n):
    ''' raise a + b * sqrt(c) to the nth power... returns the new a,b and c of the result in the same format'''
    ar,br = 1,0
    while n != 0:
        if n%2:
            ar,br = rootiply(ar,br,a,b,c)
        a,b = rootiply(a,b,a,b,c)
        n /= 2
    return ar,br

def rootipowermod(a,b,c,k,n):
    ''' compute root powers, but modding as we go'''
    ar,br = 1,0
    while k != 0:
        if k%2:
            ar,br = rootiply(ar,br,a,b,c) 
            ar,br = ar%n,br%n
        a,b = rootiply(a,b,a,b,c)
        a,b = a%n, b%n
        k /= 2
    return ar,br

def fib(k):
    ''' the kth fibonacci number'''
    a1,b1 = rootipower(1,1,5,k)
    a2,b2 = rootipower(1,-1,5,k)
    a = a1-a2
    b = b1-b2
    a,b = rootiply(0,1,a,b,5)
    # b should be 0!
    assert b == 0
    return a/2**k/5

def powermod(a,k,n):
    ''' raise a**k, modding as we go by n'''
    r = 1
    while k!=0:
        if k%2:
            r = (a*r)%n
        a = (a**2)%n
        k/=2
    return r

def mod_inv(a,n):
    ''' compute the multiplicative inverse of a, mod n'''
    t,newt,r,newr = 0,1,n,a
    while newr != 0:
        quotient = r / newr
        t, newt = newt, t - quotient * newt
        r, newr = newr, r - quotient * newr
    if r > 1: return "a is not invertible"
    if t < 0: t = t + n
    return t

def fibmod(k,n):
    ''' compute the kth fibonacci number mod n, modding as we go for efficiency'''
    a1,b1 = rootipowermod(1,1,5,k,n)
    a2,b2 = rootipowermod(1,-1,5,k,n)
    a = a1-a2
    b = b1-b2
    a,b = rootiply(0,1,a,b,5)
    a,b = a%n,b%n
    assert b == 0
    return (a*mod_inv(5,n)*mod_inv(powermod(2,k,n),n))%n

if __name__ == "__main__":
    assert rootipower(1,2,3,3) == (37,30) # 1+2sqrt(3) **3 => 13 + 4sqrt(3) => 39 + 30sqrt(3)
    assert fib(10)==55
    #print fib(10**15)%(10**9+7) # takes forever because the integers involved are REALLY REALLY REALLY BIG
    print fibmod(10**15,10**9+7) # much faster because we never deal with integers bigger than 10**9+7