我正在使用 numpy 1.6.2 和 python 2.7 处理非常大的矩阵。
给定N x M
矩阵A
和地图B
,我可以在其中找到每行要删除的元素的索引。
这是一个例子:
A =
26 55 29 30
31 65 34 35
36 75 39 40
41 85 44 45
46 95 49 50
B =
2
0
1
3
2
结果将是:
A =
26 55 30
65 34 35
36 39 40
41 85 44
46 95 50
实际上要获得这个,我创建一个这样的循环:
for i in xrange(size(B)):
A[i,:] = concatenate(A[i,0:B[i]],A[i,B[i]+1:])
但它确实很慢。 有没有更快的方法来删除我需要的元素?
谢谢大家!
答案 0 :(得分:4)
你可以像这样为A
创建一个掩码:
>>> mask = np.arange(4) != np.vstack(B)
>>> mask
array([[ True, True, False, True],
[False, True, True, True],
[ True, False, True, True],
[ True, True, True, False],
[ True, True, False, True]], dtype=bool)
然后使用此功能过滤掉False
中不需要的(A
)值,重新整形,然后重新绑定到变量名称A
:
>>> A = A[mask].reshape(5, 3)
>>> A
array([[26, 55, 30],
[65, 34, 35],
[36, 39, 40],
[41, 85, 44],
[46, 95, 50]])
这应该比使用concatenate
更快,因为它避免了为Python for
循环的每次迭代复制数组。