我创建了一个BST并在其中添加了值。但是,它们是需要TreeNode作为参数的方法。在将值添加到树中之后将值作为诸如“10”的参数传递时,这显然不是有效的参数。如何为需要它作为参数的方法传递参数。例如,他们是我创建的一个方法,需要知道被搜索的节点,它需要一个treenode参数。在我传递了一个我插入树中的值之后(就像我之前演示的那样“10”它不是一个有效的参数。我不明白为什么它不是一个有效的参数,因为它被添加到节点中。我不是在改变它来自treenode的参数就是它们的来源。
将字符串传递给其中一个方法时,它会说:BST类型中的方法预序(BST.TreeNode)不适用于参数(String)。
public class BST<E extends Comparable<E>> {
int height = 0;
protected TreeNode<E> root;
protected int size = 0;
/** Create a default binary tree */
public BST() {
}
/** Create a binary tree from an array of objects */
public BST(E[] objects) {
for (int i = 0; i < objects.length; i++)
insert(objects[i]);
}
/** Returns true if the element is in the tree */
public boolean search(E e) {
TreeNode<E> current = root; // Start from the root
while (current != null) {
if (e.compareTo(current.element) < 0) {
current = current.left;
}
else if (e.compareTo(current.element) > 0) {
current = current.right;
}
else // element matches current.element
return true; // Element is found
}
return false;
}
/** Insert element o into the binary tree
* Return true if the element is inserted successfully */
public boolean insert(E e) {
if (root == null)
root = createNewNode(e); // Create a new root
else {
// Locate the parent node
TreeNode<E> parent = null;
TreeNode<E> current = root;
while (current != null)
if (e.compareTo(current.element) < 0) {
parent = current;
current = current.left;
}
else if (e.compareTo(current.element) > 0) {
parent = current;
current = current.right;
}
else
return false; // Duplicate node not inserted
// Create the new node and attach it to the parent node
if (e.compareTo(parent.element) < 0)
parent.left = createNewNode(e);
else
parent.right = createNewNode(e);
}
size++;
return true; // Element inserted
}
protected TreeNode<E> createNewNode(E e) {
return new TreeNode<E>(e);
}
/** Inorder traversal from the root*/
public void inorder() {
inorder(root);
}
/** Inorder traversal from a subtree */
protected void inorder(TreeNode<E> root) {
if (root == null) return;
inorder(root.left);
System.out.print(root.element + " ");
inorder(root.right);
}
/** Postorder traversal from the root */
public void postorder() {
postorder(root);
}
/** Postorder traversal from a subtree */
protected void postorder(TreeNode<E> root) {
if (root == null) return;
postorder(root.left);
postorder(root.right);
System.out.print(root.element + " ");
}
/** Preorder traversal from the root */
public void preorder() {
preorder(root);
}
/** Preorder traversal from a subtree */
protected void preorder(TreeNode<E> root) {
if (root == null) return;
System.out.print(root.element + " ");
preorder(root.left);
preorder(root.right);
}
/** This inner class is static, because it does not access
any instance members defined in its outer class */
public static class TreeNode<E extends Comparable<E>> {
protected E element;
protected TreeNode<E> left;
protected TreeNode<E> right;
public TreeNode(E e) {
element = e;
}
}
/** Get the number of nodes in the tree */
public int getSize() {
return size;
}
/** Returns the root of the tree */
public TreeNode<E> getRoot() {
return root;
}
/** Returns a path from the root leading to the specified element */
public java.util.ArrayList<TreeNode<E>> path(E e) {
java.util.ArrayList<TreeNode<E>> list =
new java.util.ArrayList<TreeNode<E>>();
TreeNode<E> current = root; // Start from the root
while (current != null) {
list.add(current); // Add the node to the list
if (e.compareTo(current.element) < 0) {
current = current.left;
}
else if (e.compareTo(current.element) > 0) {
current = current.right;
}
else
break;
}
return list; // Return an array of nodes
}
/** Delete an element from the binary tree.
* Return true if the element is deleted successfully
* Return false if the element is not in the tree */
public boolean delete(E e) {
// Locate the node to be deleted and also locate its parent node
TreeNode<E> parent = null;
TreeNode<E> current = root;
while (current != null) {
if (e.compareTo(current.element) < 0) {
parent = current;
current = current.left;
}
else if (e.compareTo(current.element) > 0) {
parent = current;
current = current.right;
}
else
break; // Element is in the tree pointed at by current
}
if (current == null)
return false; // Element is not in the tree
// Case 1: current has no left children
if (current.left == null) {
// Connect the parent with the right child of the current node
if (parent == null) {
root = current.right;
}
else {
if (e.compareTo(parent.element) < 0)
parent.left = current.right;
else
parent.right = current.right;
}
}
else {
// Case 2: The current node has a left child
// Locate the rightmost node in the left subtree of
// the current node and also its parent
TreeNode<E> parentOfRightMost = current;
TreeNode<E> rightMost = current.left;
while (rightMost.right != null) {
parentOfRightMost = rightMost;
rightMost = rightMost.right; // Keep going to the right
}
// Replace the element in current by the element in rightMost
current.element = rightMost.element;
// Eliminate rightmost node
if (parentOfRightMost.right == rightMost)
parentOfRightMost.right = rightMost.left;
else
// Special case: parentOfRightMost == current
parentOfRightMost.left = rightMost.left;
}
size--;
return true; // Element inserted
}
/** Obtain an iterator. Use inorder. */
public java.util.Iterator<E> iterator() {
return new InorderIterator();
}
// Inner class InorderIterator
private class InorderIterator implements java.util.Iterator<E> {
// Store the elements in a list
private java.util.ArrayList<E> list =
new java.util.ArrayList<E>();
private int current = 0; // Point to the current element in list
public InorderIterator() {
inorder(); // Traverse binary tree and store elements in list
}
/** Inorder traversal from the root*/
private void inorder() {
inorder(root);
}
/** Inorder traversal from a subtree */
private void inorder(TreeNode<E> root) {
if (root == null)return;
inorder(root.left);
list.add(root.element);
inorder(root.right);
}
/** More elements for traversing? */
public boolean hasNext() {
if (current < list.size())
return true;
return false;
}
/** Get the current element and move to the next */
public E next() {
return list.get(current++);
}
/** Remove the current element */
public void remove() {
delete(list.get(current)); // Delete the current element
list.clear(); // Clear the list
inorder(); // Rebuild the list
}
}
/** Remove all elements from the tree */
public void clear() {
root = null;
size = 0;
}
public double treeHeight(){
double level = this.getSize();
if (level ==0)
return 0;
if (level < 2){
return level;
}
if(level == 2){
return 2;
}
else
while (level >= 2){
height++;
level = level/2;
}
return height++;
}
public double numberOfNodeAtLevel(TreeNode node, double current,double desired){
TreeNode<E> currentNode = root;
if (currentNode == null){
return 0;
}
if (currentNode.equals(node)){
return 1;}
else return numberOfNodeAtLevel(currentNode.left, current+1, desired)+
numberOfNodeAtLevel(currentNode.right, current+1, desired);
}
public static void main(String[] args){
BST <String> c = new BST<String> ();
c.insert("50");
c.insert("25");
c.insert("55");
c.insert("13");
c.insert("65");
c.insert("10");
c.insert("14");
c.insert("54");
numberOfNodeAtLevel("10",0,2) ;
c.preorder();
}
}
答案 0 :(得分:0)
该方法需要一个TreeNode类型的对象,并传递一个字符串。如果要使用在初始化树时指定的类型调用它,请使用泛型类型E
:
public double numberOfNodeAtLevel(TreeNode node, double current,double desired){
TreeNode<E> currentNode = root;
if (currentNode == null){
return 0;
}
if (currentNode.equals(node)){
return 1;
} else {
return numberOfNodeAtLevel(currentNode.left, current+1, desired)+
numberOfNodeAtLevel(currentNode.right, current+1, desired);
}
}
您可能希望覆盖equals方法,以便比较字段element
- 而不是TreeNode对象。像这样:
public bool equals(Object obj) {
return this.element.equals(((TreeNode) obj).element);
}