我使用COBYLA对带有约束的线性目标函数进行成本最小化。我通过为每个包含约束来实现下限和上限。
import numpy as np
import scipy.optimize
def linear_cost(factor_prices):
def cost_fn(x):
return np.dot(factor_prices, x)
return cost_fn
def cobb_douglas(factor_elasticities):
def tech_fn(x):
return np.product(np.power(x, factor_elasticities), axis=1)
return tech_fn
def mincost(targets, cost_fn, tech_fn, bounds):
n = len(bounds)
m = len(targets)
x0 = np.ones(n) # Do not use np.zeros.
cons = []
for factor in range(n):
lower, upper = bounds[factor]
l = {'type': 'ineq',
'fun': lambda x: x[factor] - lower}
u = {'type': 'ineq',
'fun': lambda x: upper - x[factor]}
cons.append(l)
cons.append(u)
for output in range(m):
t = {'type': 'ineq',
'fun': lambda x: tech_fn(x)[output] - targets[output]}
cons.append(t)
res = scipy.optimize.minimize(cost_fn, x0,
constraints=cons,
method='COBYLA')
return res
COBYLA并不尊重上限或下限,但它确实尊重技术约束。
>>> p = np.array([5., 20.])
>>> cost_fn = linear_cost(p)
>>> fe = np.array([[0.5, 0.5]])
>>> tech_fn = cobb_douglas(fe)
>>> bounds = [[0.0, 15.0], [0.0, float('inf')]]
>>> mincost(np.array([12.0]), cost_fn, tech_fn, bounds)
x: array([ 24.00010147, 5.99997463])
message: 'Optimization terminated successfully.'
maxcv: 1.9607782064667845e-10
nfev: 75
status: 1
success: True
fun: 239.99999999822359
为什么COBYLA不会尊重第一个因素约束(即上限@ 15)?
答案 0 :(得分:5)
COBYLA 实际上是尊重您提供的所有界限。
问题在于构建cons
列表。
也就是说,在lambda和Python(和Javascript)中的其他内部范围函数中绑定变量是词法,并且不会按照您的假设行事:http://eev.ee/blog/2011/04/24/gotcha-python-scoping-closures/循环结束后,变量lower
upper
的值为0
和inf
,变量factor
的值为1
,这些值是所有lambda函数使用的值。
一种解决方法是将变量的特定值显式绑定到伪关键字参数:
for factor in range(n):
lower, upper = bounds[factor]
l = {'type': 'ineq',
'fun': lambda x, a=lower, i=factor: x[i] - a}
u = {'type': 'ineq',
'fun': lambda x, b=upper, i=factor: b - x[i]}
cons.append(l)
cons.append(u)
for output in range(m):
t = {'type': 'ineq',
'fun': lambda x, i=output: tech_fn(x)[i] - targets[i]}
cons.append(t)
第二种方法是添加一个生成lambdas的工厂函数。