我想用java-ml训练我的数据来分类一些文件,我在做什么:
我有两个类别,每个类别都有11000个文档。并且我完全拥有92199功能,这是information gain - chi square - mutual information - gini
的礼物,我使用其中20000个2火车,
所以我有22000个文档和20000个功能来训练数据,我发现每个文档的交叉点都有功能,所以我有:
每个文档和功能的交集
不同:在功能中但不在文档中的数据
所以我在一个文档2列车中发送与他们的tf_idf
和th_idf = 0
不同的交叉点
这里我是怎么做到的:
public void buildDataset() {
DBDocMeta dbDocMeta; // the table that contains documents
dataset = new DefaultDataset();
neighbors.add(new Neighbor<Integer>("cat1")); // each neighbor contains a Document List
neighbors.add(new Neighbor<Integer>("cat2"));// neighbor integer: document{index,tf_idf} neighbor string : {word,tf_idf}
try {
dbDocMeta = new DBDocMeta();
Map<Long, String> docInfo = dbDocMeta.getDocInfo();
int count = 1;
id:
for (Long id : docInfo.keySet()) {
count++;
String cat = docInfo.get(id);
System.out.println("***********************************************");
System.out.println("Available processors (cores): " + Runtime.getRuntime().availableProcessors());
Long freeMemory = Runtime.getRuntime().freeMemory();
System.out.println("Free memory (bytes): " + freeMemory);
if (freeMemory <= 500000000) {
System.out.println("memory problem occurred !!!");
net.sf.javaml.tools.data.FileHandler.exportDataset(dataset, new File("dataset.data"));
break id;
}
long maxMemory = Runtime.getRuntime().maxMemory();
System.out.println("Maximum memory (bytes): " + (maxMemory == Long.MAX_VALUE ? "no limit" : maxMemory));
System.out.println("Total memory available to JVM (bytes): " + Runtime.getRuntime().totalMemory());
System.out.println("category : " + cat);
System.out.println("***********************************************");
Document<String> doc1 = dbWeight.getNeighbors(id);
Instance instance = new SparseInstance();
instance.setClassValue(cat);
if (!doc1.getAttributes().isEmpty()) {
neighbors:
for (Neighbor<Integer> neighbor : neighbors) {
if (!neighbor.getCategory().equalsIgnoreCase(cat)) {
continue neighbors;
}
Set<String> intersectionWords = intersection(features, doc1.getAttributes().keySet());
if (intersectionWords.isEmpty()) {
continue id;
}
HashSet<String> different = new HashSet<String>(features);
for (String word : intersectionWords) {
instance.put(dbWeight.getIndex(word), doc1.getAttributes().get(word));
different.remove(word);
}
for (String word : different) {
instance.put(dbWeight.getIndex(word), 0.0);
}
dataset.add(instance);
break neighbors;
}
}
}
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ClassNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
try {
net.sf.javaml.tools.data.FileHandler.exportDataset(dataset, new File("save.data"));
System.out.println("dataset has exported successfully");
} catch (Exception e) {
System.out.println("failed to export dataset");
e.printStackTrace();
}
}
private static <A> Set<A> intersection(final Set<A> xs, final Set<A> ys) {
// make sure that xs is the smaller set
if (ys.size() < xs.size()) {
return intersection(ys, xs);
}
final HashSet<A> result = new HashSet<A>();
for (A x : xs) {
if (ys.contains(x)) {
result.add(x);
}
}
return result;
}
这是制作数据集的真正方法吗?
答案 0 :(得分:1)
我的尝试
public static void main(String... arg){
bagOfWords = prepareBOW(dataSet); // Provide dataset
prepareSentimentalSentencesList(negData, "-1 ");
prepareSentimentalSentencesList(posData, "+1 ");
}
public List<String> prepareBOW(List<String> dataSet) {
bagOfWords = new ArrayList<String>();
// iterating each and every set of data/sentence.
for (String s : dataSet) {
String[] words = s.split(" ");
bagOfWords.add("*&^(0");
// adding each word of sentence/data in list.
for (int i = 0; i < words.length; i++) {
words[i] = words[i].replaceAll(",", "");
words[i] = words[i].replaceAll(" ", "");
words[i] = words[i].replaceAll("\\.", "");
words[i] = words[i].toLowerCase();
bagOfWords.add(words[i]);
}
}
bagOfWords.remove("");
bagOfWords = new ArrayList<String>(new LinkedHashSet<String>(bagOfWords));// Removing duplicates.
return bagOfWords;
}
public void prepareSentimentalSentencesList(List<String> dataSet, String label) {
List<String> list = new ArrayList<String>();
for (String data : dataSet) {
String wordsIndex = label;
for (String word : data.split(" ")) {
word = word.replaceAll(",", "");
word = word.replaceAll(" ", "");
word = word.replaceAll("\\.", "");
word = word.toLowerCase();
int index = getIndex(word);
if (index != -1) {
wordsIndex += (index) + ":1 ";
}
}
list.add(wordsIndex);
}
for (String s : list) {
System.out.println(s);
}
}