我正在尝试使用空间一阶导数的l1范数来计算matlab中图像的总变差。代码如下:
function TV = compute_total_variation1(y)
% y is the image
nbdims = 2;
% check number of channels in an image
if size(y,1)==1 || size(y,2)==1
% we have one dimension
nbdims = 1;
end
if size(y,1)>1 && size(y,2)>1 && size(y,3)>1
% we have three dimensions
nbdims = 3;
end
if nbdims==1
TV = sum(abs(diff(y)));
return;
end
% the total variation weight is 1
% weight_tv = ones(size(y));
g = gradient(y);
% compute using the l1 norm of the first order derivatives
TV = sum( abs(g),nbdims+1);
% TV = TV .* weight_tv;
TV = sum(TV(:));
我是否使用l1标准正确计算总变差?
修改
function TV = compute_total_variation1(y)
% y is the image
nbdims = 2;
% check number of channels in an image
if size(y,1)==1 || size(y,2)==1
% we have one dimension
nbdims = 1;
end
if size(y,1)>1 && size(y,2)>1 && size(y,3)>1
% we have three dimensions
nbdims = 3;
end
if nbdims==1
TV = sum(abs(diff(y)));
return;
end
% the total variation weight is 1
% weight_tv = ones(size(y));
[gx gy] = gradient(y);
% compute using the l1 norm of the first order derivatives
% horizontal
TVgx = sum( abs(gx),nbdims+1);
% vertical
TVgy = sum( abs(gy),nbdims+1);
% TV = TV .* weight_tv;
TV = sum(TVgx(:)) + sum(TVgy(:));
答案 0 :(得分:2)
你没有考虑第二个暗淡的衍生物:
g = gradient(y)
只返回水平维度的导数,为了得到垂直维度的导数,你需要
[gx, gy] = gradient(y);