我试图绘制两个变量之间的差异。我跟随示例集here(搜索true_p_A,它将在右侧部分)
这是我的代码
def cool(test):
n_data_points = len(test)
alpha = 1.0/np.mean(test)
lambda_1 = pm.Exponential("lambda_1", alpha) # prior on first behaviour
lambda_2 = pm.Exponential("lambda_2", alpha) # prior on second behaviour
tau = pm.DiscreteUniform("tau", lower=0, upper=len(test)) # prior on behaviour change
"""
The below deterministic functions map an assignment, in this case 0 or 1,
to a set of parameters, located in the (1,2) arrays `taus` and `centers`.
"""
@pm.deterministic
def lambda_(tau=tau, lambda_1=lambda_1, lambda_2=lambda_2):
out = np.zeros(n_data_points)
out[:tau] = lambda_1 # lambda before tau is lambda1
out[tau:] = lambda_2 # lambda after tau is lambda2
return out
def delta(p_A=lambda_1, p_B=lambda_2):
return p_A - p_B
obs = pm.Poisson("obs", lambda_, value=test, observed=True)
model = pm.Model([obs, lambda_, lambda_1, lambda_2, tau,delta])
mcmc = pm.MCMC(model)
mcmc.sample(5000, 1000, 1)
return mcmc,5000,1
def main_plotter(stats,test):
mcmc,N,bin = stats
n_count_data = len(test)
lambda_1_samples = mcmc.trace('lambda_1')[:]
lambda_2_samples = mcmc.trace('lambda_2')[:]
tau_samples = mcmc.trace('tau')[:]
delta_samples = mcmc.trace('delta')
print(delta_samples)
data = [1,2,1,2.2,5,5.5,6,5.4]
main_plotter( cool(data),data)
在示例中,没有为delta创建变量,因此不会插入任何键值。每当我运行此代码时,它告诉我它无法找到密钥。我的问题是如何访问delta后验数据?
答案 0 :(得分:1)
您在deterministic
函数定义之前缺少delta
装饰器。如果你从第21行开始改变它是有效的:
@pm.deterministic
def delta(p_A=lambda_1, p_B=lambda_2):
return p_A - p_B