在ccf分析之前进行预白化时出现问题

时间:2014-07-25 11:32:43

标签: r time-series

我有以下R代码在尝试通过为其他系列生成的模型预先白化其他系列时不起作用。

-- Libraries;  
library(forecast);  
library(TSA);  
library(xts); 

-- Read from csv;  
....    

-- Do transforms;  

Power=xts(data1[2],seq(from=as.Date("2011-01-01"), to=as.Date("2013-09-18"),by="day"),frequency=7);   
Temp=xts(data2[1],seq(from=as.Date("2011-01-01"), to=as.Date("2013-09-18"),by="day"),frequency=7);   

-- Prewhiten for CCF;

mod1=Arima(Temp,order=c(2,0,1),seasonal=list(order=c(1,1,1)));  

Box.test(mod1$residuals,lag=365,type=c("Ljung-Box"));  

x_series=mod1$residuals;  

y_filtered=residuals(Arima(Power,model=mod1));  

自从我收到错误后,上一部分无效:

Error in stats::arima(x = x, order = order, seasonal = seasonal, include.mean = include.mean,  : 
  wrong length for 'fixed'  

这里出了什么问题?

1 个答案:

答案 0 :(得分:1)

Arimastats::arima都需要ts个对象。该错误是由使用的xts个对象引起的。试试这个:

Power <- ts(data1[2], frequency=7)
Temp <- ts(data2[1], frequency=7)
mod1 <- Arima(Temp,order=c(2,0,1),seasonal=c(1,1,1))
Box.test(residuals(mod1),lag=365,type=c("Ljung-Box"))
x_series <- residuals(mod1)
y_filtered <- residuals(Arima(Power,model=mod1))