我的数据如下所示:
duration obs another
1 1.801760 ID: 10 DAY: 6/10/13 S orange
2 1.868500 ID: 10 DAY: 6/10/13 S green
3 0.233562 ID: 10 DAY: 6/10/13 S yellow
4 5.538760 ID:96 DAY: 6/8/13 T yellow
5 3.436700 ID:96 DAY: 6/8/13 T blue
6 0.533856 ID:96 DAY: 6/8/13 T pink
7 2.302250 ID:96 DAY: 6/8/13 T orange
8 2.779420 ID:96 DAY: 6/8/13 T green
我只包含了3个变量,但实际上我的数据有很多。我的问题是与丑陋的外观" obs"变量。我从另一个人那里收到了这些数据,这些人不一致地将这些信息输入到他们正在使用的软件中。
' OBS'包含三条信息: - id(ID:10,ID:96等) - 日期(M / D / Y) - 标识符(S或T)
我想拆分此信息并提取ID号(10或96),日期(例如6/8/13)和标识符(S或T)。
为此,我尝试使用strsplit进行以下操作:
temp<-strsplit(as.character(df$obs), " ")
mat<-matrix(unlist(temp), ncol=5, byrow=TRUE)
我认为这可以像我的真实数据一样工作,我有> 130,000个观察结果,而我没有意识到某些观察结果存在id没有空格的问题&#34; &#34;在&#34; ID之间:&#34;和号码。例如,在上面的数据中,&#34; ID:96&#34;冒号和数字之间没有空格。显然,我收到了这条警告信息:
Warning message:
In matrix(unlist(temp), ncol = 5, byrow = TRUE) :
data length [796454] is not a sub-multiple or multiple of the number of rows [159291]
显然,由于strsplit的输出有两种形式,因此strsplit不能被强制转换为常规列。
[1] "ID:" "10" "DAY:" "6/10/13" "S" #when there is whitespace
[1] "ID:96" "DAY:" "6/8/13" "T" #when there isn't whitespace
为了尝试绕过这个,我做了这个,以为如果我可以在&#39; ID之后引入任何空格:&#39;它可以工作:
df$obs <- gsub("ID:", "ID: ", df$obs)
但是当我执行strsplit时,这并没有起作用,它会将双空格识别为分割数据的两个位置。
如果有人知道多个strsplits的解决方案,那么可以使用单独的列为idnumber,date,identifier强制转换回原始df,这将是很好的。
编辑:抱歉,忘了为可重现的示例添加数据:
df<-structure(list(duration = c(1.80176, 1.8685, 0.233562, 5.53876,
3.4367, 0.533856, 2.30225, 2.77942), obs = structure(c(1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L), .Label = c("ID: 10 DAY: 6/10/13 S",
"ID:96 DAY: 6/8/13 T"), class = "factor"), another = structure(c(3L,
2L, 5L, 5L, 1L, 4L, 3L, 2L), .Label = c("blue", "green", "orange",
"pink", "yellow"), class = "factor")), .Names = c("duration",
"obs", "another"), class = "data.frame", row.names = c(NA, -8L
))
答案 0 :(得分:6)
在您触发该数据输入人员后,我可能会在此处考虑使用正则表达式来捕获数据。首先,这里只是&#34; obs&#34;中的数据。列(在评论中添加附加值)
obs<-c("ID: 10 DAY: 6/10/13 S", "ID: 10 DAY: 6/10/13 S", "ID: 10 DAY: 6/10/13 S",
"ID:96 DAY: 6/8/13 T", "ID:96 DAY: 6/8/13 T", "ID:96 DAY: 6/8/13 T",
"ID:96 DAY: 6/8/13 T", "ID:96 DAY: 6/8/13 T", "ID: 84DAY: 6/8/13 T")
接下来,我可以使用
捕获数据m<-regexpr("ID:\\s*(\\d+) ?DAY: (\\d+/\\d+/\\d+) (S|T)", obs, perl=T)
接下来,我使用辅助函数regcapturedmatches()来提取捕获的匹配项(它类似regmatches()
,但对于捕获组)
do.call(rbind, regcapturedmatches(obs,m))
# [,1] [,2] [,3]
# [1,] "10" "6/10/13" "S"
# [2,] "10" "6/10/13" "S"
# [3,] "10" "6/10/13" "S"
# [4,] "96" "6/8/13" "T"
# [5,] "96" "6/8/13" "T"
# [6,] "96" "6/8/13" "T"
# [7,] "96" "6/8/13" "T"
# [8,] "96" "6/8/13" "T"
# [9,] "84" "6/8/13" "T"
返回值矩阵。然后,您可以根据自己的喜好处理这些字符值。您可以将它们转换为正确的类并附加到data.frame。
但如果您确实想要使用strsplit
,则可以拆分&#34;:&#34;或带有&#34;之前的选项的空格:&#34;
do.call(rbind, strsplit(obs,"(:|:?\\s+)", obs))
# [,1] [,2] [,3] [,4] [,5]
# [1,] "ID" "10" "DAY" "6/10/13" "S"
# [2,] "ID" "10" "DAY" "6/10/13" "S"
# [3,] "ID" "10" "DAY" "6/10/13" "S"
# [4,] "ID" "96" "DAY" "6/8/13" "T"
# [5,] "ID" "96" "DAY" "6/8/13" "T"
# [6,] "ID" "96" "DAY" "6/8/13" "T"
# [7,] "ID" "96" "DAY" "6/8/13" "T"
# [8,] "ID" "96" "DAY" "6/8/13" "T"
# [9,] "ID" "84DAY" "6/8/13" "T" "ID"
直到你最新的坏数据系列为止。
答案 1 :(得分:3)
您也可以使用:
read.table(text=gsub(":"," ", df$obs),header=F,stringsAsFactors=F)
V1 V2 V3 V4 V5
# 1 ID 10 DAY 6/10/13 S
# 2 ID 10 DAY 6/10/13 S
# 3 ID 10 DAY 6/10/13 S
# 4 ID 96 DAY 6/8/13 T
# 5 ID 96 DAY 6/8/13 T
# 6 ID 96 DAY 6/8/13 T
# 7 ID 96 DAY 6/8/13 T
# 8 ID 96 DAY 6/8/13 T