图像openCV c ++中的简单照明校正

时间:2014-06-21 11:26:22

标签: c++ opencv contrast

我有一些彩色照片,照片中的照明不规律:图像的一面比另一面亮。

我想通过纠正照明来解决这个问题。 我认为局部对比会帮助我,但我不知道如何:(

请您帮我处理一段代码或管道?

6 个答案:

答案 0 :(得分:98)

将RGB图像转换为Lab颜色空间(例如,任何具有亮度通道的颜色空间都可以正常工作),然后将adaptive histogram equalization应用于L通道。最后将生成的Lab转换回RGB。

你想要的是OpenCV的CLAHE(对比度限制自适应直方图均衡)算法。但是,据我所知,它没有记录。有an example in python。您可以在Graphics Gems IV, pp474-485

中了解CLAHE

以下是CLAHE的实例: enter image description here

以下是基于http://answers.opencv.org/question/12024/use-of-clahe/生成上述图像的C ++,但扩展了颜色。

#include <opencv2/core.hpp>
#include <vector>       // std::vector
int main(int argc, char** argv)
{
    // READ RGB color image and convert it to Lab
    cv::Mat bgr_image = cv::imread("image.png");
    cv::Mat lab_image;
    cv::cvtColor(bgr_image, lab_image, CV_BGR2Lab);

    // Extract the L channel
    std::vector<cv::Mat> lab_planes(3);
    cv::split(lab_image, lab_planes);  // now we have the L image in lab_planes[0]

    // apply the CLAHE algorithm to the L channel
    cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE();
    clahe->setClipLimit(4);
    cv::Mat dst;
    clahe->apply(lab_planes[0], dst);

    // Merge the the color planes back into an Lab image
    dst.copyTo(lab_planes[0]);
    cv::merge(lab_planes, lab_image);

   // convert back to RGB
   cv::Mat image_clahe;
   cv::cvtColor(lab_image, image_clahe, CV_Lab2BGR);

   // display the results  (you might also want to see lab_planes[0] before and after).
   cv::imshow("image original", bgr_image);
   cv::imshow("image CLAHE", image_clahe);
   cv::waitKey();
}

答案 1 :(得分:25)

Bull提供的答案是迄今为止遇到的最好的答案。我一直在使用它。 这是相同的python代码:

.ampuse p,
.ampuse div {
  color: red;
}
.ampuse p + p,
.ampuse div + p,
.ampuse p + div,
.ampuse div + div {
  background: yellow;
  color: blue;
}

答案 2 :(得分:7)

基于伟大的C++ example written by Bull,我能够为Android编写此方法。

我已经取代了#34; Core.extractChannel&#34; for&#34; Core.split&#34;。这样可以避免使用known memory leak issue

Err_Response_Headers_Multiple_Content_Disposition

并称之为:

public void applyCLAHE(Mat srcArry, Mat dstArry) { 
    //Function that applies the CLAHE algorithm to "dstArry".

    if (srcArry.channels() >= 3) {
        // READ RGB color image and convert it to Lab
        Mat channel = new Mat();
        Imgproc.cvtColor(srcArry, dstArry, Imgproc.COLOR_BGR2Lab);

        // Extract the L channel
        Core.extractChannel(dstArry, channel, 0);

        // apply the CLAHE algorithm to the L channel
        CLAHE clahe = Imgproc.createCLAHE();
        clahe.setClipLimit(4);
        clahe.apply(channel, channel);

        // Merge the the color planes back into an Lab image
        Core.insertChannel(channel, dstArry, 0);

        // convert back to RGB
        Imgproc.cvtColor(dstArry, dstArry, Imgproc.COLOR_Lab2BGR);

        // Temporary Mat not reused, so release from memory.
        channel.release();
    }

}

答案 3 :(得分:2)

您还可以使用自适应直方图均衡,

from skimage import exposure

img_adapteq = exposure.equalize_adapthist(img, clip_limit=0.03)

答案 4 :(得分:0)

您可以尝试以下代码:

#include "opencv2/opencv.hpp"
#include <iostream>

using namespace std;
using namespace cv;

int main(int argc, char** argv)
{

    cout<<"Usage: ./executable input_image output_image \n";

    if(argc!=3)
    {
        return 0;
    }


    int filterFactor = 1;
    Mat my_img = imread(argv[1]);
    Mat orig_img = my_img.clone();
    imshow("original",my_img);

    Mat simg;

    cvtColor(my_img, simg, CV_BGR2GRAY);

    long int N = simg.rows*simg.cols;

    int histo_b[256];
    int histo_g[256];
    int histo_r[256];

    for(int i=0; i<256; i++){
        histo_b[i] = 0;
        histo_g[i] = 0;
        histo_r[i] = 0;
    }
    Vec3b intensity;

    for(int i=0; i<simg.rows; i++){
        for(int j=0; j<simg.cols; j++){
            intensity = my_img.at<Vec3b>(i,j);

            histo_b[intensity.val[0]] = histo_b[intensity.val[0]] + 1;
            histo_g[intensity.val[1]] = histo_g[intensity.val[1]] + 1;
            histo_r[intensity.val[2]] = histo_r[intensity.val[2]] + 1;
        }
    }

    for(int i = 1; i<256; i++){
        histo_b[i] = histo_b[i] + filterFactor * histo_b[i-1];
        histo_g[i] = histo_g[i] + filterFactor * histo_g[i-1];
        histo_r[i] = histo_r[i] + filterFactor * histo_r[i-1];
    }

    int vmin_b=0;
    int vmin_g=0;
    int vmin_r=0;
    int s1 = 3;
    int s2 = 3;

    while(histo_b[vmin_b+1] <= N*s1/100){
        vmin_b = vmin_b +1;
    }
    while(histo_g[vmin_g+1] <= N*s1/100){
        vmin_g = vmin_g +1;
    }
    while(histo_r[vmin_r+1] <= N*s1/100){
        vmin_r = vmin_r +1;
    }

    int vmax_b = 255-1;
    int vmax_g = 255-1;
    int vmax_r = 255-1;

    while(histo_b[vmax_b-1]>(N-((N/100)*s2)))
    {   
        vmax_b = vmax_b-1;
    }
    if(vmax_b < 255-1){
        vmax_b = vmax_b+1;
    }
    while(histo_g[vmax_g-1]>(N-((N/100)*s2)))
    {   
        vmax_g = vmax_g-1;
    }
    if(vmax_g < 255-1){
        vmax_g = vmax_g+1;
    }
    while(histo_r[vmax_r-1]>(N-((N/100)*s2)))
    {   
        vmax_r = vmax_r-1;
    }
    if(vmax_r < 255-1){
        vmax_r = vmax_r+1;
    }

    for(int i=0; i<simg.rows; i++)
    {
        for(int j=0; j<simg.cols; j++)
        {

            intensity = my_img.at<Vec3b>(i,j);

            if(intensity.val[0]<vmin_b){
                intensity.val[0] = vmin_b;
            }
            if(intensity.val[0]>vmax_b){
                intensity.val[0]=vmax_b;
            }


            if(intensity.val[1]<vmin_g){
                intensity.val[1] = vmin_g;
            }
            if(intensity.val[1]>vmax_g){
                intensity.val[1]=vmax_g;
            }


            if(intensity.val[2]<vmin_r){
                intensity.val[2] = vmin_r;
            }
            if(intensity.val[2]>vmax_r){
                intensity.val[2]=vmax_r;
            }

            my_img.at<Vec3b>(i,j) = intensity;
        }
    }

    for(int i=0; i<simg.rows; i++){
        for(int j=0; j<simg.cols; j++){

            intensity = my_img.at<Vec3b>(i,j);
            intensity.val[0] = (intensity.val[0] - vmin_b)*255/(vmax_b-vmin_b);
            intensity.val[1] = (intensity.val[1] - vmin_g)*255/(vmax_g-vmin_g);
            intensity.val[2] = (intensity.val[2] - vmin_r)*255/(vmax_r-vmin_r);
            my_img.at<Vec3b>(i,j) = intensity;
        }
    }   


    // sharpen image using "unsharp mask" algorithm
    Mat blurred; double sigma = 1, threshold = 5, amount = 1;
    GaussianBlur(my_img, blurred, Size(), sigma, sigma);
    Mat lowContrastMask = abs(my_img - blurred) < threshold;
    Mat sharpened = my_img*(1+amount) + blurred*(-amount);
    my_img.copyTo(sharpened, lowContrastMask);    

    imshow("New Image",sharpened);
    waitKey(0);

    Mat comp_img;
    hconcat(orig_img, sharpened, comp_img);
    imwrite(argv[2], comp_img);
}

查看here了解详情。

答案 5 :(得分:0)

HSV的值通道是B,G,R值的最大值。 因此,可以通过以下公式获得可感知的亮度。 enter image description here

我已将CLAHE应用于此频道,看起来不错。

  1. 我计算图像的感知亮度通道
  2. 我将图像更改为HSV或LAB颜色空间
  3. 如果我将图像颜色空间更改为HSV,则通过添加CLAHE应用的感知亮度通道来替换图像中的V通道。

3. *如果将图像颜色空间更改为LAB,则通过添加CLAHE应用的感知亮度通道来替换图像中的L通道。 4.然后,我再次将图像转换为BGR格式。

我的步骤的python代码

import cv2
import numpy as np

original = cv2.imread("/content/rqq0M.jpg")

def get_perceive_brightness(img):
    float_img = np.float64(img)  # unit8 will make overflow
    b, g, r = cv2.split(float_img)
    float_brightness = np.sqrt(
        (0.241 * (r ** 2)) + (0.691 * (g ** 2)) + (0.068 * (b ** 2)))
    brightness_channel = np.uint8(np.absolute(float_brightness))
    return brightness_channel

perceived_brightness_channel = get_perceive_brightness(original)

clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
clahe_applied_perceived_channel = clahe.apply(perceived_brightness_channel) 

def hsv_equalizer(img, new_channel):
  hsv = cv2.cvtColor(original, cv2.COLOR_BGR2HSV)
  h,s,v =  cv2.split(hsv)
  merged_hsv = cv2.merge((h, s, new_channel))
  bgr_img = cv2.cvtColor(merged_hsv, cv2.COLOR_HSV2BGR)
  return bgr_img

def lab_equalizer(img, new_channel):
 lab = cv2.cvtColor(original, cv2.COLOR_BGR2LAB)
  l,a,b =  cv2.split(lab)
  merged_lab = cv2.merge((new_channel,a,b))
  bgr_img = cv2.cvtColor(merged_hsv, cv2.COLOR_LAB2BGR)
  return bgr_img

hsv_equalized_img = hsv_equalizer(original,clahe_applied_perceived_channel)
lab_equalized_img = lab_equalizer(original,clahe_applied_perceived_channel)

hsv_equalized_img的输出

enter image description here lab_equlized_img

的输出

enter image description here