我有一个表格,其中包含有关geometry linestring
形式的图表边缘的信息。查询select * from edge
的空间结果如下所示
始终使用插入语句的两个linestring
创建 EACH geometry points
,如下所示:
INSERT INTO edge VALUES( geometry::Parse('LINESTRING(1 1 ,1 2)'))
为了找到两点之间的最短路径,我已经根据Dijkstra in c#实现了Dijkstra
算法,但是我发现了STDistance()函数,它只是为了做同样的事情而已。通过执行简单查询。任何人都可以给我一个提示我如何使用STDistance
创建像我描述的对象?我发现的每个例子都使用从3分创建的linestrings
。
我很难使用示例,我可以说3 linestrings
如下:
INSERT INTO edge VALUES( geometry::Parse('LINESTRING(1 1 ,1 2)'))
INSERT INTO edge VALUES( geometry::Parse('LINESTRING(1 2 ,1 3)'))
INSERT INTO edge VALUES( geometry::Parse('LINESTRING(1 3 ,1 4)'))
并找到从1 1
到1 4
修改 我已经成功通过以下方式将所有线串组合成一个形状:
SELECT geometry::UnionAggregate(linestring) FROM edge
我变形了:
0x000000000104160000002242C0E56A32834050D72864D98D714000000000003082400000000000B0784000000000000071400000000000A075402242C0E56A32834050D72864D98D7140CFB591AC8CBA83402B7FD245B3976B400000000000F087400000000000806F402242C0E56A32834050D72864D98D7140CFB591AC8CBA83402B7FD245B3976B40000000000000854000000000004053400000000000E06940000000000080504000000000009076400000000000C06340F89FD09A6BDC8140A4AC72B9CEDB69404AAD03D8122784408FC4879BE4996540CFB591AC8CBA83402B7FD245B3976B40F89FD09A6BDC8140A4AC72B9CEDB694000000000000071400000000000A075400000000000E06940000000000080504000000000001073400000000000C05E4000000000009076400000000000C06340000000000000854000000000004053404AAD03D8122784408FC4879BE49965400000000000688B40000000000040504004000000010000000001040000000108000000010A00000005000000FFFFFFFF0000000005000000000000000002000000000100000002000000000200000002000000000300000002
现在我按如下方式使用STDistance
:
SELECT (geometry::UnionAggregate(linestring)).STDistance(geometry::STGeomFromText('POINT(0 0)', 0)) FROM edge
然而返回值是关于点(0,0)和呈现形状之间的距离,当我打算计算从一个点到另一个点的边长时,任何线索?
答案 0 :(得分:1)
Code Kata。正如其他人在评论中所说,STDistance将为您提供两个几何对象之间的最小直线距离,而不是图形中的路径。在Sql中实现Dijkstra是超出我的,但是对于少数节点(例如您已经证明),强力方法是可以接受的。此代码计算图形中从A到B的所有路径,然后选择最短路径。
请注意,这只能证明可以完成,而不是建议应该这样做。您在c#中的现有代码可能更简单,更快捷。
感谢您让我有机会了解sql server中的几何函数。
-- Declare and set parameters.
DECLARE @start geometry, @end geometry
SET @start = geometry::STGeomFromText('POINT(-1 1)', 0);
SET @end = geometry::STGeomFromText('POINT(1 3)', 0);
-- Caching of ST function results and for reversibility.
DECLARE @segments TABLE (
edge geometry,
start_point geometry,
end_point geometry,
[weight] float
)
INSERT @segments
( edge, start_point, end_point, [weight])
SELECT e, e.STStartPoint(), e.STEndPoint(), e.STLength() FROM edge UNION ALL
-- Can traverse edges both ways unless we're in a directed graph?
SELECT e, e.STEndPoint(), e.STStartPoint(), e.STLength() FROM edge
-- We need to know number of edges for some bookkeeping later.
DECLARE @total_edges INT
SELECT @total_edges = COUNT(*) FROM edge;
-- Meat of the procedure. Find all sensible paths from @start to @end allowed by the graph, using a recursive common table expression.
WITH cte (path, start_point, end_point, [weight], segments_traversed) AS (
SELECT
edge AS path,
start_point,
end_point,
[weight] ,
1 AS segments_traversed
FROM
@segments
WHERE
@start.STEquals(start_point) = 1 UNION ALL
SELECT
c.path.STUnion(s.edge) AS PATH,
s.start_point,
s.end_point,
s.[weight] + c.[weight] AS weight,
c.segments_traversed + 1 AS segments_traversed
FROM cte c
INNER JOIN @segments s ON
-- next edge must start where this one ended.
s.start_point.STEquals(c.end_point) = 1 AND
-- terminate paths that hit the endpoint.
c.start_point.STEquals(@end) = 0 AND
-- if we traveled more than the number of edges there's surely a better path that doesn't loop!
-- also acts as a guarantee of termination.
c.segments_traversed < @total_edges
)
SELECT TOP 1
path
FROM
cte c
WHERE
-- Restrict to paths ending at end point.
c.end_point.STEquals(@end) = 1
ORDER BY
weight ASC