我正在尝试使用this method来分解具有大指数的基数,因为标准C ++库中的数据类型不存储大的数字。
问题出现在最后一个循环中,我使用fmod()
函数来修改我的大数字。答案应该是1但我得到16.有人看到了问题吗?
#include <iostream>
#include <vector>
#include <math.h>
using namespace std;
typedef vector<int> ivec;
ivec binStorage, expStorage;
void exponents()
{
for (int j=binStorage.size(); j>=0; j--)
if(binStorage[binStorage.size()-j-1]!=0)
expStorage.push_back(pow(2, j));
}
void binary(int number)
{
int remainder;
if(number <= 1)
{
cout << number;
return;
}
remainder = number%2;
binary(number >> 1);
cout << remainder;
binStorage.push_back(remainder);
}
int main()
{
int num = 117;
int message = 5;
int mod = 19;
int prod = 1;
binary(num);
cout << endl;
exponents();
cout << "\nExponents: " << endl;
for (int i=0; i<expStorage.size(); i++)
cout << expStorage[i] << " " ;
cout << endl;
cout << "\nMessage" << "-" << "Exponent" << endl;
for (int i=0; i<expStorage.size(); i++)
{
cout << message << "-" << expStorage[i] << endl;
prod *= fmod(pow(message, expStorage[i]), mod);
}
cout << "\nAnswer: " << fmod(prod, mod) << endl;
return 0;
}
以下是我的结果:
1110101
Exponents:
64 32 16 4 1
Message-Exponent
5-64
5-32
5-16
5-4
5-1
Answer: 16
Process returned 0 (0x0) execution time : 0.085 s
Press any key to continue.
编辑: 这是问题循环。
for (int i=0; i<expStorage.size(); i++)
{
cout << message << "-" << expStorage[i] << endl;
prod *= fmod(pow(message, expStorage[i]), mod);
}
答案 0 :(得分:1)
您发布的算法是modular exponentiation algorithm。按照您发布的链接中的步骤,算法将缩减为以下代码:
#include <iostream>
#include <cmath>
// B : Base
// E : Exponent
// M : Modulo
constexpr int powermod(int const B, int const E, int const M) {
return ((E > 1) ? (powermod(B, E / 2, M) * powermod(B, E / 2, M) * powermod(B, E % 2, M)) % M
: (E == 0) ? 1 : B % M);
}
int main() {
int const e = 117;
int const b = 5;
int const m = 19;
std::cout << "Answer: " << powermod(b, e, m) << std::endl;
return 0;
}
注意,我使用了constexpr
。如果您的编译器不支持它,您可以将其删除。使用constexpr
并假设输入参数是常量表达式,如上例所示,幂指数的计算将在编译时进行。
现在关于您发布的代码:
似乎fmod
doesn't work well with big numbers喜欢(5^32
和5^64
)并给出错误的结果。
此外,您的代码会遇到编译错误和运行时错误,因此我对其进行了更正。
我编写了一个基于递归计算模数的算法。基本上是我在上面发布的算法的变体,其安全防护能力为4.(参见下面的函数safemod()
):
#include <iostream>
#include <cmath>
#include <vector>
using namespace std;
typedef vector<int> ivec;
// B : Base (e.g., 5)
// E : Exponent (e.g., 32)
// M : Modulo (e.g., 19)
double safemod(double B, double E, double M) {
return ((E > 4) ? fmod(safemod(B, E / 2, M) * safemod(B, E / 2, M), M)
:
fmod(pow(B, E), M));
}
void exponents(ivec const &binStorage, ivec &expStorage) {
int j(pow(2.0, binStorage.size() - 1));
for (vector<int>::const_iterator it(binStorage.begin()), ite(binStorage.end()); it != ite; ++it) {
if (*it != 0) expStorage.push_back(j);
j /= 2;
}
}
void binary(int const number, ivec &binStorage) {
if (number > 0) {
int remainder = number % 2;
binary(number / 2, binStorage);
binStorage.push_back(remainder);
}
}
int main() {
int num = 117;
int message = 5;
int mod = 19;
int prod = 1;
ivec binStorage, expStorage;
binary(num, binStorage);
for (size_t i(0); i < binStorage.size(); ++i) cout << binStorage[i];
cout << endl;
exponents(binStorage, expStorage);
cout << "\nExponents: " << endl;
for (size_t i(0); i<expStorage.size(); ++i) cout << expStorage[i] << " ";
cout << endl;
cout << "\nMessage" << "-" << "Exponent" << endl;
for (size_t i(0); i<expStorage.size(); ++i) {
cout << message << "-" << expStorage[i] << endl;
prod *= safemod(message, expStorage[i], mod);
}
cout << "\nAnswer: " << fmod(prod, mod) << endl;
return 0;
}
1110101
指数: 64 32 16 4 1
消息指数
5 - 64
5 - 32
5 - 16
5 - 1
答案:1