更新
我在其他系统中运行此示例。在Intel i7-3630QM,Intel HD4000和Radeon HD 7630M上,所有结果都是一样的。对于i7-4700MQ / 4800MQ,当使用32位gcc的OpenCL或64位gcc时,CPU的结果会有所不同。这是64位gcc和OpenCl默认使用SSE而32位gcc使用387数学运算的结果,至少64位gcc在设置-mfpmath = 387时产生相同的结果。所以我必须阅读更多内容并尝试使用x86浮点。谢谢大家的答案。
我从"编程CUDA和OpenCL运行Lorenz系统示例:使用现代C ++库的案例研究"对于不同的OpenCL设备上的十个系统,我得到的结果不同:
Quadro K1100M(NVIDIA CUDA)
R => x y z
0.100000 => -0.000000 -0.000000 0.000000
5.644444 => -3.519254 -3.519250 4.644452
11.188890 => 5.212534 5.212530 10.188904
16.733334 => 6.477303 6.477297 15.733333
22.277779 => 3.178553 2.579687 17.946903
27.822224 => 5.008720 7.753564 16.377680
33.366669 => -13.381100 -15.252210 36.107887
38.911114 => 4.256534 6.813675 23.838787
44.455555 => -11.083726 0.691549 53.632290
50.000000 => -8.624105 -15.728293 32.516193
英特尔(R)HD Graphics 4600(英特尔(R)OpenCL)
R => x y z
0.100000 => -0.000000 -0.000000 0.000000
5.644444 => -3.519253 -3.519250 4.644451
11.188890 => 5.212531 5.212538 10.188890
16.733334 => 6.477320 6.477326 15.733339
22.277779 => 7.246771 7.398651 20.735369
27.822224 => -6.295782 -10.615027 14.646572
33.366669 => -4.132523 -7.773201 14.292910
38.911114 => 14.183139 19.582197 37.943520
44.455555 => -3.129006 7.564254 45.736408
50.000000 => -9.146419 -17.006729 32.976696
Intel(R)Core(TM)i7-4800MQ CPU @ 2.70GHz(英特尔(R)OpenCL)
R => x y z
0.100000 => -0.000000 -0.000000 0.000000
5.644444 => -3.519254 -3.519251 4.644453
11.188890 => 5.212513 5.212507 10.188900
16.733334 => 6.477303 6.477296 15.733332
22.277779 => -8.295195 -8.198518 22.271002
27.822224 => -4.329878 -4.022876 22.573458
33.366669 => 9.702943 3.997370 38.659538
38.911114 => 16.105495 14.401397 48.537579
44.455555 => -12.551083 -9.239071 49.378693
50.000000 => 7.377638 3.447747 47.542763
正如您所看到的,这三个设备同意R = 16.733334的值,然后开始分歧。
我在没有VexCL的情况下使用odeint运行相同的区域,并且在CPU运行时得到的结果接近OpenCL的结果:
Vanilla odeint:
R => x y z
16.733334 => 6.47731 6.47731 15.7333
22.277779 => -8.55303 -6.72512 24.7049
27.822224 => 3.88874 3.72254 21.8227
我不确定我在这看到的是什么?由于CPU结果彼此如此接近,它看起来像GPU的问题,但由于我是一个OpenCL新手,我需要一些指示如何找到这个的根本原因。
答案 0 :(得分:1)
您必须了解GPU的精度低于CPU。这是常见的,因为GPU专为游戏而设计,其中精确值不是设计目标。
通常GPU精度为32位。虽然CPU内部具有48或64位精度数学运算,但即使结果被切割为32位存储。
您运行的操作在很大程度上取决于这些小差异,为每个设备创建不同的结果。例如,此操作也会根据准确度创建非常不同的结果:
a=1/(b-c);
a=1/(b-c); //b = 1.00001, c = 1.00002 -> a = -100000
a=1/(b-c); //b = 1.0000098, c = 1.000021 -> a = -89285.71428
在您自己的结果中,您可以看到每个设备的不同,即使是低R值:
5.644444 => -3.519254 -3.519250 4.644452
5.644444 => -3.519253 -3.519250 4.644451
5.644444 => -3.519254 -3.519251 4.644453
但是,您声明“对于低值,结果同意R=16
,然后开始分歧”。嗯,这取决于,因为它们并不完全相同,即使是R=5.64
。
答案 1 :(得分:0)
我已经创建了一个stackoverflow-23805423分支来测试它。以下是不同设备的输出。请注意,CPU和AMD GPU都具有一致的结果。 Nvidia GPU也有一致的结果,只有那些不同。这个问题似乎有关:IEEE-754 standard on NVIDIA GPU (sm_13)
```
1. Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz (Intel(R) OpenCL)
R = {
0: 5.000000e+00 1.000000e+01 1.500000e+01 2.000000e+01 2.500000e+01
5: 3.000000e+01 3.500000e+01 4.000000e+01 4.500000e+01 5.000000e+01
}
X = {
0: ( -3.265986e+00 -3.265986e+00 4.000000e+00) ( 4.898979e+00 4.898979e+00 9.000000e+00)
2: ( 6.110101e+00 6.110101e+00 1.400000e+01) ( -7.118047e+00 -7.118044e+00 1.900000e+01)
4: ( 9.392907e-01 1.679711e+00 1.455276e+01) ( 5.351486e+00 1.051580e+01 9.403333e+00)
6: ( -1.287673e+01 -2.096754e+01 2.790419e+01) ( -6.555650e-01 -2.142401e+00 2.721632e+01)
8: ( 2.711249e+00 2.540842e+00 3.259012e+01) ( -4.936437e+00 8.534876e-02 4.604861e+01)
}
1. Intel(R) Core(TM) i5-3570K CPU @ 3.40GHz (AMD Accelerated Parallel Processing)
R = {
0: 5.000000e+00 1.000000e+01 1.500000e+01 2.000000e+01 2.500000e+01
5: 3.000000e+01 3.500000e+01 4.000000e+01 4.500000e+01 5.000000e+01
}
X = {
0: ( -3.265986e+00 -3.265986e+00 4.000000e+00) ( 4.898979e+00 4.898979e+00 9.000000e+00)
2: ( 6.110101e+00 6.110101e+00 1.400000e+01) ( -7.118047e+00 -7.118044e+00 1.900000e+01)
4: ( 9.392907e-01 1.679711e+00 1.455276e+01) ( 5.351486e+00 1.051580e+01 9.403333e+00)
6: ( -1.287673e+01 -2.096754e+01 2.790419e+01) ( -6.555650e-01 -2.142401e+00 2.721632e+01)
8: ( 2.711249e+00 2.540842e+00 3.259012e+01) ( -4.936437e+00 8.534876e-02 4.604861e+01)
}
1. Capeverde (AMD Accelerated Parallel Processing)
R = {
0: 5.000000e+00 1.000000e+01 1.500000e+01 2.000000e+01 2.500000e+01
5: 3.000000e+01 3.500000e+01 4.000000e+01 4.500000e+01 5.000000e+01
}
X = {
0: ( -3.265986e+00 -3.265986e+00 4.000000e+00) ( 4.898979e+00 4.898979e+00 9.000000e+00)
2: ( 6.110101e+00 6.110101e+00 1.400000e+01) ( -7.118047e+00 -7.118044e+00 1.900000e+01)
4: ( 9.392907e-01 1.679711e+00 1.455276e+01) ( 5.351486e+00 1.051580e+01 9.403333e+00)
6: ( -1.287673e+01 -2.096754e+01 2.790419e+01) ( -6.555650e-01 -2.142401e+00 2.721632e+01)
8: ( 2.711249e+00 2.540842e+00 3.259012e+01) ( -4.936437e+00 8.534876e-02 4.604861e+01)
}
1. Tesla C1060 (NVIDIA CUDA)
R = {
0: 5.000000e+00 1.000000e+01 1.500000e+01 2.000000e+01 2.500000e+01
5: 3.000000e+01 3.500000e+01 4.000000e+01 4.500000e+01 5.000000e+01
}
X = {
0: ( -3.265986e+00 -3.265986e+00 4.000000e+00) ( 4.898979e+00 4.898979e+00 9.000000e+00)
2: ( 6.110101e+00 6.110101e+00 1.400000e+01) ( -7.118047e+00 -7.118044e+00 1.900000e+01)
4: ( 7.636878e+00 2.252859e+00 2.964935e+01) ( 1.373357e+01 8.995382e+00 3.998563e+01)
6: ( 7.163476e+00 8.802735e+00 2.839662e+01) ( -5.536365e+00 -5.997181e+00 3.191463e+01)
8: ( -2.762679e+00 -5.167883e+00 2.324565e+01) ( 2.776211e+00 4.734162e+00 2.949507e+01)
}
1. Tesla K20c (NVIDIA CUDA)
R = {
0: 5.000000e+00 1.000000e+01 1.500000e+01 2.000000e+01 2.500000e+01
5: 3.000000e+01 3.500000e+01 4.000000e+01 4.500000e+01 5.000000e+01
}
X = {
0: ( -3.265986e+00 -3.265986e+00 4.000000e+00) ( 4.898979e+00 4.898979e+00 9.000000e+00)
2: ( 6.110101e+00 6.110101e+00 1.400000e+01) ( -7.118047e+00 -7.118044e+00 1.900000e+01)
4: ( 7.636878e+00 2.252859e+00 2.964935e+01) ( 1.373357e+01 8.995382e+00 3.998563e+01)
6: ( 7.163476e+00 8.802735e+00 2.839662e+01) ( -5.536365e+00 -5.997181e+00 3.191463e+01)
8: ( -2.762679e+00 -5.167883e+00 2.324565e+01) ( 2.776211e+00 4.734162e+00 2.949507e+01)
}
1. Tesla K40c (NVIDIA CUDA)
R = {
0: 5.000000e+00 1.000000e+01 1.500000e+01 2.000000e+01 2.500000e+01
5: 3.000000e+01 3.500000e+01 4.000000e+01 4.500000e+01 5.000000e+01
}
X = {
0: ( -3.265986e+00 -3.265986e+00 4.000000e+00) ( 4.898979e+00 4.898979e+00 9.000000e+00)
2: ( 6.110101e+00 6.110101e+00 1.400000e+01) ( -7.118047e+00 -7.118044e+00 1.900000e+01)
4: ( 7.636878e+00 2.252859e+00 2.964935e+01) ( 1.373357e+01 8.995382e+00 3.998563e+01)
6: ( 7.163476e+00 8.802735e+00 2.839662e+01) ( -5.536365e+00 -5.997181e+00 3.191463e+01)
8: ( -2.762679e+00 -5.167883e+00 2.324565e+01) ( 2.776211e+00 4.734162e+00 2.949507e+01)
}
```