时间序列连接中的加权行平均值

时间:2014-05-20 15:39:18

标签: r data.table

您好我正在寻找解决以下问题的最干净/最快的方法:

我的设置看起来像这样

library(data.table)
set.seed(1234)
DT1 <- data.table(replicate(12,runif(5)))
setnames(DT1,LETTERS[1:12])
DT1[,time:=100]
DT2 <- data.table(time=rep(100,12), grp=rep(c("X","Y","Z"),each=4),  
    sub=LETTERS[1:12], weight=sample(1:100,12))

options(digits=2)
DT1
     A      B    C    D    E     F    G    H    I    J     K    L time
1: 0.11 0.6403 0.69 0.84 0.32 0.811 0.46 0.76 0.55 0.50 0.074 0.50  100
2: 0.62 0.0095 0.54 0.29 0.30 0.526 0.27 0.20 0.65 0.68 0.310 0.49  100
3: 0.61 0.2326 0.28 0.27 0.16 0.915 0.30 0.26 0.31 0.48 0.717 0.75  100
4: 0.62 0.6661 0.92 0.19 0.04 0.831 0.51 0.99 0.62 0.24 0.505 0.17  100
5: 0.86 0.5143 0.29 0.23 0.22 0.046 0.18 0.81 0.33 0.77 0.153 0.85  100

> DT2
    time grp sub weight
 1:  100   X   A     87
 2:  100   X   B      5
 3:  100   X   C     32
 4:  100   X   D      2
 5:  100   Y   E     23
 6:  100   Y   F     68
 7:  100   Y   G     29
 8:  100   Y   H     48
 9:  100   Z   I     99
10:  100   Z   J     52
11:  100   Z   K     11
12:  100   Z   L     80

我想通过引用组,子类和&amp;来计算DT1列的加权平均值(每行)。来自DT2的权重,每个时间点加入。

E.g。所以DT1然后得到X,Y和X列。 Z绑定到它,所以在这种情况下,第一行的列X是87 * 0.11 + 5 * 0.64 + 32 * 0.69 + 2 * 0.84 /(87 + 5 + 32 + 2)

DT1中有数百万行具有不同的时间点,因此内存可能是一个限制因素

非常感谢任何建议!

1 个答案:

答案 0 :(得分:0)

或许这样的事情:

library(reshape2)

setkey(DT2, time, sub)

DT2[melt(DT1, id.var = 'time')[, row := 1:.N, by = list(time, variable)]][,
    sum(weight * value) / sum(weight), by = list(time, grp, row)]
#    time grp row   V1
# 1:  100   X   1 0.29
# 2:  100   X   2 0.57
# 3:  100   X   3 0.51
# 4:  100   X   4 0.69
# 5:  100   X   5 0.69
# 6:  100   Y   1 0.67
# 7:  100   Y   2 0.36
# 8:  100   Y   3 0.52
# 9:  100   Y   4 0.71
#10:  100   Y   5 0.31
#11:  100   Z   1 0.50
#12:  100   Z   2 0.59
#13:  100   Z   3 0.51
#14:  100   Z   4 0.39
#15:  100   Z   5 0.59

如果您愿意,也可以重塑上述结果:

# assuming you called the above table "res"
dcast.data.table(res, row + time ~ grp)
#Using 'V1' as value column. Use 'value.var' to override
#   row time    X    Y    Z
#1:   1  100 0.29 0.67 0.50
#2:   2  100 0.57 0.36 0.59
#3:   3  100 0.51 0.52 0.51
#4:   4  100 0.69 0.71 0.39
#5:   5  100 0.69 0.31 0.59