如何计算非方阵的Cholesky分解,以便用numpy
计算马哈拉诺比斯距离?
def get_fitting_function(G):
print(G.shape) #(14L, 11L) --> 14 samples of dimension 11
g_mu = G.mean(axis=0)
#Cholesky decomposition uses half of the operations as LU
#and is numerically more stable.
L = np.linalg.cholesky(G)
def fitting_function(g):
x = g - g_mu
z = np.linalg.solve(L, x)
#Mahalanobis Distance
MD = z.T*z
return math.sqrt(MD)
return fitting_function
C:\Users\Matthias\CV\src\fitting_function.py in get_fitting_function(G)
22 #Cholesky decomposition uses half of the operations as LU
23 #and is numerically more stable.
---> 24 L = np.linalg.cholesky(G)
25
26 def fitting_function(g):
C:\Users\Matthias\AppData\Local\Enthought\Canopy\User\lib\site-packages\numpy\linalg\linalg.pyc in cholesky(a)
598 a, wrap = _makearray(a)
599 _assertRankAtLeast2(a)
--> 600 _assertNdSquareness(a)
601 t, result_t = _commonType(a)
602 signature = 'D->D' if isComplexType(t) else 'd->d'
C:\Users\Matthias\AppData\Local\Enthought\Canopy\User\lib\site-packages\numpy\linalg\linalg.pyc in _assertNdSquareness(*arrays)
210 for a in arrays:
211 if max(a.shape[-2:]) != min(a.shape[-2:]):
--> 212 raise LinAlgError('Last 2 dimensions of the array must be square')
213
214 def _assertFinite(*arrays):
LinAlgError: Last 2 dimensions of the array must be square
LinAlgError: Last 2 dimensions of the array must be square
基于Matlab实现:Mahalanobis distance inverting the covariance matrix
修改:chol(a)
= linalg.cholesky(a).T
矩阵的cholesky分解(matlab中的chol(a)
返回一个上三角矩阵,但linalg.cholesky(a)
返回一个下三角矩阵)(来源:http://wiki.scipy.org/NumPy_for_Matlab_Users)
EDIT2:
G -= G.mean(axis=0)[None, :]
C = (np.dot(G, G.T) / float(G.shape[0]))
#Cholesky decomposition uses half of the operations as LU
#and is numerically more stable.
L = np.linalg.cholesky(C).T
所以如果D = x ^ t.S ^ -1.x = x ^ t。(L.L ^ t)^ - 1.x = x ^ t.L.L ^ t.x = z ^ t.z
答案 0 :(得分:1)
我不相信你可以。 Cholesky分解不仅需要一个方阵,而且需要一个Hermitian矩阵和一个唯一性的正定矩阵。它基本上是LU分解,条件是L = U'。事实上,该算法经常被用作数字检查给定矩阵是正定的方法。见Wikipedia。
也就是说,根据定义,协方差矩阵是对称的正半定,所以你应该能够对它进行cholesky。
编辑:在您计算时,您的矩阵C=np.dot(G, G.T)
应该是对称的,但也许是错误的。您可以尝试强制对称C = ( C + C.T) /2.0
,然后再次尝试chol(C)
。