您为BST构建此代码: 公共类BinarySearchTreeCode {
private class BSTNode {
public Object data;
public BSTNode left;
public BSTNode right;
BSTNode(Object newdata) {
data = newdata;
left = null;
right = null;
}
BSTNode(Object data, BSTNode left, BSTNode right){
this.data = data;
this.left = left;
this.right = right;
}
public String toString(){
return "data: "+data+" ";
}
}
// tree root
private BSTNode root;
public BinarySearchTreeCode(){
root = null;
}
public BinarySearchTreeCode(BSTNode n){
root = n;
}
public BinarySearchTreeCode(BinarySearchTreeCode bst){// copy constructor
this.root = clone(bst.root);
}
BSTNode clone(final BSTNode source){
if (source == null) return null;
else
return new BSTNode(source.data, clone(source.left), clone(source.right));
}
// compare two objects (integer type)
private static int compare(Object o1, Object o2) {
int ans = 0;
int n1 = (Integer)o1;
int n2 = (Integer)o2;
if(n1>n2) ans = 1;
else if(n1<n2) ans = -1;
return ans;
}
// insert element to the tree
public void insertRecurs(Object elem) {
root = insertRecurs(root, elem);
}
BSTNode insertRecurs(BSTNode node, Object elem) {
if (node == null) {
return new BSTNode(elem);
}
if (compare(elem, node.data) < 0) {
node.left = insertRecurs(node.left, elem);
return node;
}
else{
node.right = insertRecurs(node.right, elem);
return node;
}
}
// search for element elem
public boolean find(Object elem) {
return find(root,elem);
}
boolean find(BSTNode tree, Object elem) {
if (tree == null)
return false;
if (compare(elem, tree.data) == 0)
return true;
if (compare(elem, tree.data) < 0)
return find(tree.left, elem);
else
return find(tree.right, elem);
}
// print all tree nodes
public void print() {
print(" ",root);
System.out.println();
}
void print(String s,BSTNode tree) {//Inorder
if (tree != null) {
print(s+"L ,",tree.left);
System.out.println(tree.data+" : "+s);
print(s+"R ,",tree.right);
}
}
///////////////////////////
public void remove(Object elem) {
root = remove(root, elem);
}
public static BSTNode remove(BSTNode node, Object n){
if(node != null){
if(compare(n,node.data) > 0){
node.right = remove(node.right,n);
}
else if(compare(n,node.data) < 0){
node.left = remove(node.left,n);
}
else{//the node that should be deleted is found
if(node.left == null && node.right == null){
node = null;
}
else if(node.left != null && node.right == null){//the node has only one child (left)
node = node.left;
}
else if(node.right != null && node.left == null){//the node has only one child (right)
node = node.right;
}
else{//node "tree" has two children
if(node.right.left == null){// his right node has only one child (right)
node.right.left = node.left;
node = node.right;
}
else{// remove the smallest element
BSTNode q, p = node.right;
while(p.left.left != null)
p = p.left;
q = p.left;
p.left = q.right;
node.data = q.data;
}
}
}
}
return node;
}
public void insertLoop(Object elem) {
BSTNode newNode = new BSTNode(elem);
if (root == null){
root = newNode;
}
else{
BSTNode n = root;
boolean flag = true;
while (flag){
if (compare(elem,n.data) > 0){
if (n.right != null) n = n.right;
else{
n.right = newNode;
flag = false;;
}
}
else{
if (n.left != null) n = n.left;
else{
n.left = newNode;
flag = false;;
}
}
}
}
}
public boolean isEmpty(){
return this.root == null;
}
//代码的结尾
问题是 我如何构建一个函数,在这个中给出BNT中的max对象public Object maximum(){
}
任何建议?
感谢你的帮助。
答案 0 :(得分:1)
二进制搜索树中的最大对象是最右边的节点。你可以按如下方式得到它:
1)从根节点
开始2)检查node.right是否为空
3)如果是,则节点是最大对象。终止搜索。
4)如果没有那么移动到最右边的nde(node = node.right)并重复步骤2.
示例代码:
public BSTNode findMaxNode()
{
Node temp = root;
Node max = null;
while(temp != null)
{
max = temp;
temp = temp.right
}
return max;
}