与CPython相比,Numba和Cython并没有提高性能,也许我使用不正确?

时间:2014-05-08 19:06:46

标签: python numpy cython numba

BIG EDIT:

=====

为了清楚起见,我删除旧的结果并将其替换为最近的结果。问题仍然是:我是否正确使用Cython和Numba,以及可以对代码进行哪些改进? (我有一个更新,更简单的临时IPython笔记本,包含所有代码和结果here

1)

我想我弄清楚为什么Cython,Numba和CPython之间最初没有区别:这是因为我喂它们

numpy数组作为输入:

x = np.asarray([x_i*np.random.randint(8,12)/10 for x_i in range(n)])

而不是列表:

x = [x_i*random.randint(8,12)/10 for x_i in range(n)]

使用Numpy数组作为数据输入的基准

enter image description here

使用Python列表作为输入的基准

enter image description here

2)

我用显式循环替换了zip()函数,然而,它并没有产生太大的影响。代码是:

CPython的

def py_lstsqr(x, y):
    """ Computes the least-squares solution to a linear matrix equation. """
    len_x = len(x)
    x_avg = sum(x)/len_x
    y_avg = sum(y)/len(y)
    var_x = 0
    cov_xy = 0
    for i in range(len_x):
        temp = (x[i] - x_avg)
        var_x += temp**2
        cov_xy += temp*(y[i] - y_avg)
    slope = cov_xy / var_x
    y_interc = y_avg - slope*x_avg
    return (slope, y_interc) 

用Cython

%load_ext cythonmagic

%%cython
def cy_lstsqr(x, y):
    """ Computes the least-squares solution to a linear matrix equation. """
    cdef double x_avg, y_avg, var_x, cov_xy,\
         slope, y_interc, x_i, y_i
    cdef int len_x
    len_x = len(x)
    x_avg = sum(x)/len_x
    y_avg = sum(y)/len(y)
    var_x = 0
    cov_xy = 0
    for i in range(len_x):
        temp = (x[i] - x_avg)
        var_x += temp**2
        cov_xy += temp*(y[i] - y_avg)
    slope = cov_xy / var_x
    y_interc = y_avg - slope*x_avg
    return (slope, y_interc)

Numba

from numba import jit

@jit
def numba_lstsqr(x, y):
    """ Computes the least-squares solution to a linear matrix equation. """
    len_x = len(x)
    x_avg = sum(x)/len_x
    y_avg = sum(y)/len(y)
    var_x = 0
    cov_xy = 0
    for i in range(len_x):
        temp = (x[i] - x_avg)
        var_x += temp**2
        cov_xy += temp*(y[i] - y_avg)
    slope = cov_xy / var_x
    y_interc = y_avg - slope*x_avg
    return (slope, y_interc)

2 个答案:

答案 0 :(得分:2)

以下是我认为Numba正在发生的事情:

Numba在Numpy阵列上工作。没有其他的。其他一切与Numba无关。

zip返回Numba无法看到的任意项的迭代器。因此,Numba无法进行太多的编译。

使用for i in range(...)循环索引可能会产生更好的结果并允许更强大的类型推断。

答案 1 :(得分:0)

使用内置sum()可能会导致问题。

这里的线性回归代码在Numba中运行得更快:

@numba.jit
def ols(x, y):
    """Simple OLS for two data sets."""
    M = x.size

    x_sum = 0.
    y_sum = 0.
    x_sq_sum = 0.
    x_y_sum = 0.

    for i in range(M):
        x_sum += x[i]
        y_sum += y[i]
        x_sq_sum += x[i] ** 2
        x_y_sum += x[i] * y[i]

    slope = (M * x_y_sum - x_sum * y_sum) / (M * x_sq_sum - x_sum**2)
    intercept = (y_sum - slope * x_sum) / M

    return slope, intercept