我是merging两个CSV文件,输入如下。
file1.csv
Id,attr1,attr2,attr3
1,True,7,"Purple"
2,False,19.8,"Cucumber"
3,False,-0.5,"A string with a comma, because it has one"
4,True,2,"Nope"
5,True,4.0,"Tuesday"
6,False,1,"Failure"
file2.csv
Id,attr4,attr5,attr6
2,"python",500000.12,False
5,"program",3,True
3,"Another string",-5,False
当我运行此代码时
import pandas as pd
df1 = pd.read_csv("file1.csv")
df2 = pd.read_csv("file2.csv")
merged = df1.merge(df2, on="Id", how="outer").fillna("")
merged.to_csv("merged.csv", index=False)
我得到像这样的输出
Id,attr1,attr2,attr3,attr4,attr5,attr6
1,True,7.0,Purple,,,
2,False,19.8,Cucumber,python,500000.12,False
3,False,-0.5,"A string with a comma, because it has one",Another string,-5.0,False
4,True,2.0,Nope,,,
5,True,4.0,Tuesday,program,3.0,True
6,False,1.0,Failure,,,
请注意,我的多条记录中的attr2
已从int
转换为float
。
1,True,7.0,Purple,,,
与预期的
相对应1,True,7,Purple,,,
对于此示例数据集,这是一个小麻烦。但是,当我针对我的大量数据运行它时,此行为也会出现在我的Id
列上。这会打破我工作流程链中的进程。
如何阻止pandas对整个文件进行此转换,或者理想情况下是针对特定列进行此转换?
答案 0 :(得分:3)
您可以向dtype
参数传递一个值(如果您想影响整个DataFrame,则是一种类型,还是一个字典;如果您想影响单个列):
>>> df = pd.read_csv("file1.csv", dtype={"id": int, "attr2": str})
>>> df
id attr1 attr2 attr3
0 1 True 7 Purple
1 2 False 19.8 Cucumber
2 3 False -0.5 A string with a comma, because it has one
3 4 True 2 Nope
4 5 True 4.0 Tuesday
5 6 False 1 Failure
[6 rows x 4 columns]
>>> df.dtypes
id int32
attr1 bool
attr2 object
attr3 object
dtype: object