我的目标是使用R中lme4
包的lmer
和glmer
函数,从变截距,变斜率多级模型计算预测值。并且清楚,我在这里展示了一个玩具示例,其中包括" mtcars"数据集:
以下是我通常如何通过变截距,变斜率多级模型创建预测值(此代码应该可以正常工作):
# loading in-built cars dataset
data(mtcars)
# the "gear" column will be the group-level factor, so we'll have cars nested
# within "gear" type
mtcars$gear <- as.factor(mtcars$gear)
# fitting varying-slope, varying-intercept model
m <- lmer(mpg ~ 1 + wt + hp + (1 + wt|gear), data=mtcars)
# creating the prediction frame
newdata <- with(mtcars, expand.grid(wt=unique(wt),
gear=unique(gear),
hp=mean(hp)))
# calculating predictions
newdata$pred <- predict(m, newdata, re.form=~(1 + wt|gear))
# quick ggplot2 graph
p <- ggplot(newdata, aes(x=wt, y=pred, colour=gear))
p + geom_line() + ggtitle("Varying Slopes")
上面的R代码应该可以工作,但是如果我想从非线性变量截距,变化斜率创建和绘制预测,那么它显然会失败。为了简单和可重复,这里是使用&#34; mtcars&#34;的绊脚石。数据集:
# key question: how to create predictions if I want to examine a non-linear
# varying slope?
# creating a squared term for a non-linear relationship
# NB: usually I use the `poly` function
mtcars$wtsq <- (mtcars$wt)^2
# fitting varying-slope, varying-intercept model with a non-linear trend
m <- lmer(mpg ~ 1 + wt + wtsq + hp + (1 + wt + wtsq|gear), data=mtcars)
# creating the prediction frame
newdata <- with(mtcars, expand.grid(wt=unique(wt),
wtsq=unique(wtsq),
gear=unique(gear),
hp=mean(hp)))
# calculating predictions
newdata$pred <- predict(m, newdata, re.form=~(1 + wt + wtsq|gear))
# quick ggplot2 graph
# clearly not correct (see the graph below)
p <- ggplot(newdata, aes(x=wt, y=pred, colour=gear))
p + geom_line() + ggtitle("Varying Slopes")
显然,预测帧未正确设置。在R中拟合非线性变截距,变斜率多级模型时,如何创建和绘制预测值的任何想法?谢谢!
答案 0 :(得分:4)
问题是,当expand.grid
与wt
同时使用wt^2
时,您会创建wt
和wt^2
的所有可能组合。您对代码的修改有效:
newdata <- with(mtcars, expand.grid(wt=unique(wt),
gear=unique(gear),
hp=mean(hp)))
newdata$wtsq <- newdata$wt^2
newdata$pred <- predict(m, newdata)
p <- ggplot(newdata, aes(x=wt, y=pred, colour=gear, group=gear))
p + geom_line() + ggtitle("Varying Slopes")