试图用lmer模型预测

时间:2014-11-03 19:16:56

标签: r

我试图预测混合效果模型(逻辑回归)的固定效果。我的模特是:

MOD.MIX.1 <- glmer(PATCH_TYPE~PC1+PC2+PC3+JUL.DAY+(1|Study_area)+
                   (1|ID),family=binomial,data=FOR.MODEL)

我试图以这种方式预测模型:

newdata <- with(MOD.MIX.1, expand.grid(PC1=unique(PC1),
                                    PC2=mean(FOR.MODEL$PC2),
                                    PC3=mean(FOR.MODEL$PC3),
                                    JUL.DAY=mean(FOR.MODEL$JUL.DAY)))

PREDICTPC1<-predict(MOD.MIX.1, newdata)

这是我得到的错误:

Error: couldn't evaluate grouping factor Study_area within model frame: 
      try adding grouping factor to data frame explicitly if possible

这是什么意思,我该如何处理?

数据:

structure(list(Study_area = structure(c(1L, 1L, 1L, 1L), .Label = c("GLQ", 
"MEN", "STB", "STN", "STO"), class = "factor"), PATCH_CODE = structure(c(2L, 
2L, 2L, 91L), .Label = c("A", "A1", "A2", "A3", "A4", "A5", "A6", 
"A7", "A8", "A9", "AA1", "AA2", "AA3", "AB1", "AB2", "AB3", "AC1", 
"AC2", "AC3", "AD1", "AD2", "AD3", "AE1", "AE2", "AF1", "AF2", 
"AG1", "AG2", "AG3", "AH1", "AH2", "AH3", "AI1", "AI2", "AI3", 
"AJ1", "AJ2", "AK1", "AK2", "AK3", "AL1", "AL2", "AL3", "AM1", 
"AM2", "AM3", "AN1", "AN2", "AO1", "AO2", "AO3", "AP1", "AP2", 
"AP3", "AP4", "AQ1", "AQ2", "AQ3", "AR1", "AR2", "AR3", "AS1", 
"AS2", "AS3", "AS4", "AT1", "AT2", "AT3", "AT4", "AU1", "AU2", 
"AU3", "AU4", "AV1", "AV2", "AV3", "AV4", "AW1", "AW2", "AW3", 
"AX1", "AX2", "AX3", "AY1", "AY2", "AY3", "AZ1", "AZ2", "AZ3", 
"B", "B1", "B2", "B3", "B4", "BA1", "BA2", "BA3", "BB", "BB1", 
"BB2", "BB3", "BC1", "BC2", "BC3", "BD1", "BD2", "BD3", "BE1", 
"BE2", "BE3", "BF1", "BF2", "BF3", "BG1", "BG2", "BG3", "BH1", 
"BH2", "BH3", "BI1", "BI2", "BI3", "BJ1", "BJ2", "BJ3", "BK1", 
"BK2", "BK3", "BL1", "BL2", "BL3", "BM1", "BM2", "BN1", "BN2", 
"BN3", "BO1", "BO2", "BO3", "BO4", "BP1", "BP2", "BP3", "BQ1", 
"BQ2", "BQ3", "BR1", "BR2", "BR3", "BS1", "BS2", "BT1", "BT2", 
"BT3", "BU1", "BU2", "BU3", "BV1", "BV2", "BV3", "BW1", "BX1", 
"BX2", "BY1", "BY2", "BY3", "BZ1", "BZ2", "BZ3", "BZ4", "C", 
"C1", "C2", "C3", "C4", "C5", "C6", "CA1", "CA2", "CA3", "CB1", 
"CB2", "CC", "CC1", "CC2", "CD1", "CE1", "CE2", "CF1", "CF2", 
"CG1", "CG2", "CH1", "CH2", "CI1", "CI2", "CJ1", "CJ2", "CK1", 
"CK2", "CL1", "CL2", "CM1", "CM2", "CN1", "CN2", "CO1", "CO2", 
"CO3", "D", "D1", "D2", "D3", "D4", "D5", "D6", "E", "E1", "E2", 
"E3", "E4", "F1", "F2", "F3", "F4", "F5", "G1", "G2", "G3", "G4", 
"G5", "G6", "G7", "G8", "H1", "H2", "H3", "H4", "HH", "I1", "I2", 
"I3", "I4", "J1", "J2", "J3", "J4", "J5", "J6", "J7", "J8", "J9", 
"K1", "K2", "K3", "K4", "K5", "L1", "L2", "L3", "M1", "M2", "M3", 
"M4", "M5", "M6", "N1", "N2", "N3", "O1", "O2", "O3", "O4", "O5", 
"O6", "P1", "P2", "P3", "P4", "Q1", "Q2", "Q3", "Q4", "Q5", "R1", 
"R2", "R3", "S1", "S2", "S3", "S4", "S5", "S6", "T1", "T2", "T3", 
"T4", "U1", "U2", "U3", "U4", "U5", "U6", "V1", "V2", "V3", "W1", 
"W2", "W3", "X1", "X2", "X3", "Y1", "Y2", "Y3", "Y4", "Z1", "Z2", 
"Z3"), class = "factor"), PATCH_NAME = structure(c(1L, 1L, 1L, 
35L), .Label = c("A", "AA", "AA ", "AB", "AB ", "AC", "AC ", 
"AD", "AD ", "AE", "AE ", "AF", "AF ", "AG", "AG ", "AH", "AI", 
"AJ", "AK", "AL", "AM", "AN", "AO", "AP", "AQ", "AR", "AS", "AT", 
"AU", "AV", "AW", "AX", "AY", "AZ", "B", "BA", "BB", "BC", "BD", 
"BE", "BF", "BG", "BH", "BI", "BJ", "BK", "BL", "BM", "BN", "BO", 
"BP", "BQ", "BR", "BS", "BT", "BU", "BV", "BW", "BX", "BY", "BZ", 
"C", "CA", "CB", "CC", "CD", "CE", "CF", "CG", "CH", "CI", "CJ", 
"CK", "CL", "CM", "CN", "CO", "D", "E", "F", "F ", "G", "G ", 
"H", "H ", "I", "I ", "J", "J ", "K", "K ", "L", "L ", "M", "M ", 
"N", "N ", "O", "O ", "P", "P ", "Q", "Q ", "R", "R ", "S", "S ", 
"T", "T ", "U ", "V", "V ", "W", "W ", "X", "X ", "Y", "Y ", 
"Z", "Z "), class = "factor"), REPLICATE = structure(c(1L, 1L, 
1L, 1L), .Label = c("1", "2", "3", "4", "5", "6", "7", "8", "9", 
"B", "C", "H"), class = "factor"), REP_MES = c(19L, 19L, 19L, 
133L), Observer = structure(c(4L, 4L, 4L, 4L), .Label = c("CM", 
"JA", "JB", "JC", "SH", "SP", "TP"), class = "factor"), HAB_TYPE = structure(c(2L, 
2L, 2L, 2L), .Label = c("Grazed", "Ungrazed"), class = "factor"), 
    PATCH_TYPE = c(1, 0, 0, 1), Male_visits__all_ = c(3L, 0L, 
    0L, 1L), Male_visits__successful_ = c(3L, 0L, 0L, 1L), Male_visits__for_young_ = c(0L, 
    0L, 0L, 0L), Female_visits__all_ = c(1L, 0L, 0L, 0L), Female_visits__successful_ = c(1L, 
    0L, 0L, 0L), Female_visits__for_young_ = c(0L, 0L, 0L, 0L
    ), Juv__Visits__all_ = c(0L, 0L, 0L, 0L), Juv__Visits__succ__ = c(0L, 
    0L, 0L, 0L), HERB_0 = c(0L, 0L, 40L, 10L), HERB_20 = c(0L, 
    0L, 10L, 0L), HERB_50 = c(0L, 0L, 0L, 0L), GRASS_0 = c(10L, 
    100L, 60L, 30L), GRASS_20 = c(0L, 20L, 0L, 0L), GRASS_50 = c(0L, 
    0L, 0L, 0L), RUSH_0 = c(0L, 0L, 0L, 0L), RUSH_20 = c(0L, 
    0L, 0L, 0L), RUSH_50 = c(0L, 0L, 0L, 0L), ERIC_0 = c(0L, 
    0L, 0L, 0L), ERIC_20 = c(0L, 0L, 0L, 0L), ERIC_50 = c(0L, 
    0L, 0L, 0L), BRACK_0 = c(0L, 0L, 0L, 0L), BRACK_20 = c(0L, 
    0L, 0L, 0L), BRACK_50 = c(0L, 0L, 0L, 0L), MOSS = c(0L, 0L, 
    0L, 0L), BARE = c(90L, 0L, 0L, 0L), WATER = c(0L, 0L, 0L, 
    0L), O_HUNG = structure(c(3L, 3L, 3L, 3L), .Label = c("BRA", 
    "GOR", "N", "RUS", "S"), class = "factor"), DISCREET = structure(c(5L, 
    17L, 17L, 5L), .Label = c("1", "10", "15", "1.5", "2", "20", 
    "25", "3", "4", "40", "5", "50", "6", "7", "8", "9", "NO"
    ), class = "factor"), Notes = structure(c(21L, NA, NA, 21L
    ), .Label = c("By burn", "Clear-felled conifer", "Concrete reservoir overflow", 
    "Female feeding 4 rf juvs, male sing", "Foraging figure includes flycatchin", 
    "Gorse", "Grassy area surrounded by juniper", "Male, female and 4 juvs, male singi", 
    "Male singing most of time, female f", "Patch of rushes", 
    "pr around nest (female removing fae", "Pr foraging, didn't appear to be pr", 
    "Pr provisioning at least 2 fledged", "Pr with 4 rf juvs", 
    "Pr with at least 1 rf young, male s", "Road", "Road edge", 
    "rows added as James Bray said the reference patches were the same in extensive bracken", 
    "Shorter grass under tree", "Shorter veg. surrounded by taller", 
    "Track", "Willow"), class = "factor"), Site = structure(c(NA_integer_, 
    NA_integer_, NA_integer_, NA_integer_), .Label = c("A", "B", 
    "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", 
    "O", "P", "Q", "R", "S", "T"), class = "factor"), Site_visit = c(NA_integer_, 
    NA_integer_, NA_integer_, NA_integer_), DAY = c(17L, 17L, 
    17L, 17L), DEAD = c(0L, 0L, 0L, 0L), StartHour = c(6L, NA, 
    NA, 6L), StartMinute = c(0L, NA, NA, 0L), EndHour = c(6L, 
    NA, NA, 6L), EndMinute = c(30L, NA, NA, 30L), DURATION = c(30L, 
    NA, NA, 30L), EASTING = c(297736L, NA, NA, 297991L), NORTHING = c(703033L, 
    NA, NA, 702934L), ELEV = c(NA_integer_, NA_integer_, NA_integer_, 
    NA_integer_), MONTH = c(6L, 6L, 6L, 6L), ORIENTATION = structure(c(NA_integer_, 
    NA_integer_, NA_integer_, NA_integer_), .Label = c("C", "N", 
    "S"), class = "factor"), PERCH = structure(c(NA_integer_, 
    NA_integer_, NA_integer_, NA_integer_), .Label = c("B", "F", 
    "G", "R", "T"), class = "factor"), TERR = structure(c(NA_integer_, 
    NA_integer_, NA_integer_, NA_integer_), .Label = "M", class = "factor"), 
    VISIT_NO = c(NA_integer_, NA_integer_, NA_integer_, NA_integer_
    ), JUL.DAY = c(17, 17, 17, 17), ID = c("GLQ_JC_19", "GLQ_JC_19", 
    "GLQ_JC_19", "GLQ_JC_133"), PC1 = c(0.0435645668204425, 0.72948034145072, 
    0.803061560901585, 0.259840578885553), PC2 = c(-0.593400745369881, 
    0.848541838597916, -1.19902967772894, -0.58625628136995), 
    PC3 = c(-0.729043630624223, -0.534297045616433, 0.655933470491286, 
    -0.518820312795394)), .Names = c("Study_area", "PATCH_CODE", 
"PATCH_NAME", "REPLICATE", "REP_MES", "Observer", "HAB_TYPE", 
"PATCH_TYPE", "Male_visits__all_", "Male_visits__successful_", 
"Male_visits__for_young_", "Female_visits__all_", "Female_visits__successful_", 
"Female_visits__for_young_", "Juv__Visits__all_", "Juv__Visits__succ__", 
"HERB_0", "HERB_20", "HERB_50", "GRASS_0", "GRASS_20", "GRASS_50", 
"RUSH_0", "RUSH_20", "RUSH_50", "ERIC_0", "ERIC_20", "ERIC_50", 
"BRACK_0", "BRACK_20", "BRACK_50", "MOSS", "BARE", "WATER", "O_HUNG", 
"DISCREET", "Notes", "Site", "Site_visit", "DAY", "DEAD", "StartHour", 
"StartMinute", "EndHour", "EndMinute", "DURATION", "EASTING", 
"NORTHING", "ELEV", "MONTH", "ORIENTATION", "PERCH", "TERR", 
"VISIT_NO", "JUL.DAY", "ID", "PC1", "PC2", "PC3"), row.names = c(NA, 
4L), class = "data.frame")

模型结构

str(MOD.MIX.1)
Formal class 'glmerMod' [package "lme4"] with 13 slots
  ..@ resp   :Reference class 'glmResp' [package "lme4"] with 11 fields
  .. ..$ Ptr    :<externalptr> 
  .. ..$ mu     : num [1:1208] 0.316 0.341 0.31 0.325 0.222 ...
  .. ..$ offset : num [1:1208] -0.42 -0.308 -0.45 -0.38 -0.903 ...
  .. ..$ sqrtXwt: num [1:1208] 0.465 0.474 0.462 0.468 0.416 ...
  .. ..$ sqrtrwt: num [1:1208] 2.15 2.11 2.16 2.14 2.41 ...
  .. ..$ weights: num [1:1208] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ wtres  : num [1:1208] 1.47 -0.719 -0.67 1.441 -0.534 ...
  .. ..$ y      : num [1:1208] 1 0 0 1 0 0 1 0 0 1 ...
  .. ..$ eta    : num [1:1208] -0.771 -0.659 -0.801 -0.731 -1.254 ...
  .. ..$ family :List of 11
  .. .. ..$ family    : chr "binomial"
  .. .. ..$ link      : chr "logit"
  .. .. ..$ linkfun   :function (mu)  
  .. .. ..$ linkinv   :function (eta)  
  .. .. ..$ variance  :function (mu)  
  .. .. ..$ dev.resids:function (y, mu, wt)  
  .. .. ..$ aic       :function (y, n, mu, wt, dev)  
  .. .. ..$ mu.eta    :function (eta)  
  .. .. ..$ validmu   :function (mu)  
  .. .. ..$ valideta  :function (eta)  
  .. .. ..$ simulate  :function (object, nsim)  
  .. .. ..- attr(*, "class")= chr "family"
  .. ..$ n      : num [1:1208] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..and 41 methods, of which 29 are possibly relevant:
  .. ..  aic, allInfo, allInfo#lmResp, copy#envRefClass, devResid, fam,
  .. ..  initialize, initialize#lmResp, initializePtr, Laplace, link, muEta,
  .. ..  ptr, ptr#lmResp, resDev, setOffset, setResp, setTheta, setWeights,
  .. ..  sqrtWrkWt, theta, updateMu, updateMu#lmResp, updateWts, variance,
  .. ..  wrkResids, wrkResp, wrss, wtWrkResp
  ..@ Gp     : int [1:3] 0 220 222
  ..@ call   : language glmer(formula = PATCH_TYPE ~ PC1 + PC2 + PC3 + JUL.DAY + (1 | Study_area) +      (1 | ID), data = FOR.MODEL, family = binomial)
  ..@ frame  :'data.frame': 1208 obs. of  7 variables:
  .. ..$ PATCH_TYPE: num [1:1208] 1 0 0 1 0 0 1 0 0 1 ...
  .. ..$ PC1       : num [1:1208] 0.0436 0.7295 0.8031 0.2598 1.1722 ...
  .. ..$ PC2       : num [1:1208] -0.593 0.849 -1.199 -0.586 -1.66 ...
  .. ..$ PC3       : num [1:1208] -0.729 -0.534 0.656 -0.519 2.483 ...
  .. ..$ JUL.DAY   : num [1:1208] 17 17 17 17 17 17 17 17 17 20 ...
  .. ..$ Study_area: Factor w/ 2 levels "GLQ","MEN": 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ ID        : chr [1:1208] "GLQ_JC_19" "GLQ_JC_19" "GLQ_JC_19" "GLQ_JC_133" ...
  .. ..- attr(*, "terms")=Classes 'terms', 'formula' length 3 PATCH_TYPE ~ PC1 + PC2 + PC3 + JUL.DAY + (1 + Study_area) + (1 + ID)
  .. .. .. ..- attr(*, "variables")= language list(PATCH_TYPE, PC1, PC2, PC3, JUL.DAY, Study_area, ID)
  .. .. .. ..- attr(*, "factors")= int [1:7, 1:6] 0 1 0 0 0 0 0 0 0 1 ...
  .. .. .. .. ..- attr(*, "dimnames")=List of 2
  .. .. .. .. .. ..$ : chr [1:7] "PATCH_TYPE" "PC1" "PC2" "PC3" ...
  .. .. .. .. .. ..$ : chr [1:6] "PC1" "PC2" "PC3" "JUL.DAY" ...
  .. .. .. ..- attr(*, "term.labels")= chr [1:6] "PC1" "PC2" "PC3" "JUL.DAY" ...
  .. .. .. ..- attr(*, "order")= int [1:6] 1 1 1 1 1 1
  .. .. .. ..- attr(*, "intercept")= int 1
  .. .. .. ..- attr(*, "response")= int 1
  .. .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
  .. .. .. ..- attr(*, "predvars")= language list(PATCH_TYPE, PC1, PC2, PC3, JUL.DAY, Study_area, ID)
  .. .. .. ..- attr(*, "dataClasses")= Named chr [1:7] "numeric" "numeric" "numeric" "numeric" ...
  .. .. .. .. ..- attr(*, "names")= chr [1:7] "PATCH_TYPE" "PC1" "PC2" "PC3" ...
  .. .. .. ..- attr(*, "predvars.fixed")= language list(PATCH_TYPE, PC1, PC2, PC3, JUL.DAY)
  .. ..- attr(*, "formula")=Class 'formula' length 3 PATCH_TYPE ~ PC1 + PC2 + PC3 + JUL.DAY + (1 | Study_area) + (1 | ID)
  .. .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
  ..@ flist  :List of 2
  .. ..$ ID        : Factor w/ 220 levels "GLQ_JB_58","GLQ_JB_59",..: 19 19 19 4 4 4 5 5 5 6 ...
  .. ..$ Study_area: Factor w/ 2 levels "GLQ","MEN": 1 1 1 1 1 1 1 1 1 1 ...
  .. ..- attr(*, "assign")= int [1:2] 1 2
  ..@ cnms   :List of 2
  .. ..$ ID        : chr "(Intercept)"
  .. ..$ Study_area: chr "(Intercept)"
  ..@ lower  : num [1:2] 0 0
  ..@ theta  : num [1:2] 0 0.365
  ..@ beta   : num [1:5] -0.88409 0.57692 -0.14263 -0.40055 0.00369
  ..@ u      : num [1:222] 0 0 0 0 0 0 0 0 0 0 ...
  ..@ devcomp:List of 2
  .. ..$ cmp : Named num [1:11] 5.53 29.32 1241.23 1.86 1243.09 ...
  .. .. ..- attr(*, "names")= chr [1:11] "ldL2" "ldRX2" "wrss" "ussq" ...
  .. ..$ dims: Named int [1:14] 1208 1208 5 1203 2 222 1 1 0 2 ...
  .. .. ..- attr(*, "names")= chr [1:14] "N" "n" "p" "nmp" ...
  ..@ pp     :Reference class 'merPredD' [package "lme4"] with 18 fields
  .. ..$ Lambdat:Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
  .. .. .. ..@ i       : int [1:222] 0 1 2 3 4 5 6 7 8 9 ...
  .. .. .. ..@ p       : int [1:223] 0 1 2 3 4 5 6 7 8 9 ...
  .. .. .. ..@ Dim     : int [1:2] 222 222
  .. .. .. ..@ Dimnames:List of 2
  .. .. .. .. ..$ : NULL
  .. .. .. .. ..$ : NULL
  .. .. .. ..@ x       : num [1:222] 0 0 0 0 0 0 0 0 0 0 ...
  .. .. .. ..@ factors : list()
  .. ..$ LamtUt :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
  .. .. .. ..@ i       : int [1:2416] 18 220 18 220 18 220 3 220 3 220 ...
  .. .. .. ..@ p       : int [1:1209] 0 2 4 6 8 10 12 14 16 18 ...
  .. .. .. ..@ Dim     : int [1:2] 222 1208
  .. .. .. ..@ Dimnames:List of 2
  .. .. .. .. ..$ : NULL
  .. .. .. .. ..$ : NULL
  .. .. .. ..@ x       : num [1:2416] 0 0.17 0 0.173 0 ...
  .. .. .. ..@ factors : list()
  .. ..$ Lind   : int [1:222] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ Ptr    :<externalptr> 
  .. ..$ RZX    : num [1:222, 1:5] 0 0 0 0 0 0 0 0 0 0 ...
  .. ..$ Ut     :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
  .. .. .. ..@ i       : int [1:2416] 18 220 18 220 18 220 3 220 3 220 ...
  .. .. .. ..@ p       : int [1:1209] 0 2 4 6 8 10 12 14 16 18 ...
  .. .. .. ..@ Dim     : int [1:2] 222 1208
  .. .. .. ..@ Dimnames:List of 2
  .. .. .. .. ..$ : chr [1:222] "GLQ_JB_58" "GLQ_JB_59" "GLQ_JB_60" "GLQ_JC_133" ...
  .. .. .. .. ..$ : NULL
  .. .. .. ..@ x       : num [1:2416] 0.465 0.465 0.474 0.474 0.462 ...
  .. .. .. ..@ factors : list()
  .. ..$ Utr    : num [1:222] 0 0 0 0 0 0 0 0 0 0 ...
  .. ..$ V      : num [1:1208, 1:5] 0.465 0.474 0.462 0.468 0.416 ...
  .. ..$ VtV    : num [1:5, 1:5] 241 0 0 0 0 ...
  .. ..$ Vtr    : num [1:5] 33.49 -15.03 34.71 8.54 512.19
  .. ..$ X      : num [1:1208, 1:5] 1 1 1 1 1 1 1 1 1 1 ...
  .. .. ..- attr(*, "dimnames")=List of 2
  .. .. .. ..$ : chr [1:1208] "1" "2" "3" "4" ...
  .. .. .. ..$ : chr [1:5] "(Intercept)" "PC1" "PC2" "PC3" ...
  .. .. ..- attr(*, "assign")= int [1:5] 0 1 2 3 4
  .. ..$ Xwts   : num [1:1208] 0.465 0.474 0.462 0.468 0.416 ...
  .. ..$ Zt     :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
  .. .. .. ..@ i       : int [1:2416] 18 220 18 220 18 220 3 220 3 220 ...
  .. .. .. ..@ p       : int [1:1209] 0 2 4 6 8 10 12 14 16 18 ...
  .. .. .. ..@ Dim     : int [1:2] 222 1208
  .. .. .. ..@ Dimnames:List of 2
  .. .. .. .. ..$ : chr [1:222] "GLQ_JB_58" "GLQ_JB_59" "GLQ_JB_60" "GLQ_JC_133" ...
  .. .. .. .. ..$ : NULL
  .. .. .. ..@ x       : num [1:2416] 1 1 1 1 1 1 1 1 1 1 ...
  .. .. .. ..@ factors : list()
  .. ..$ beta0  : num [1:5] 0 0 0 0 0
  .. ..$ delb   : num [1:5] 0 0 0 0 0
  .. ..$ delu   : num [1:222] 0 0 0 0 0 0 0 0 0 0 ...
  .. ..$ theta  : num [1:2] 0 0.365
  .. ..$ u0     : num [1:222] 0 0 0 0 0 0 0 0 0 0 ...
  .. ..and 42 methods, of which 30 are possibly relevant:
  .. ..  b, beta, CcNumer, copy#envRefClass, initialize, initializePtr,
  .. ..  installPars, L, ldL2, ldRX2, linPred, P, ptr, RX, RXdiag, RXi,
  .. ..  setBeta0, setDelb, setDelu, setTheta, solve, solveU, sqrL, u, unsc,
  .. ..  updateDecomp, updateL, updateLamtUt, updateRes, updateXwts
  ..@ optinfo:List of 7
  .. ..$ optimizer: chr "Nelder_Mead"
  .. ..$ control  :List of 3
  .. .. ..$ xst    : num [1:7] 0.02 0.02 0.0641 0.0122 0.0101 ...
  .. .. ..$ xt     : num [1:7] 1.00e-05 1.00e-05 3.21e-05 6.10e-06 5.05e-06 ...
  .. .. ..$ verbose: int 0
  .. ..$ derivs   :List of 2
  .. .. ..$ gradient: num [1:7] 1.35e-03 -1.64e-04 -5.18e-05 -6.99e-04 8.31e-04 ...
  .. .. ..$ Hessian : num [1:7, 1:7] 2.70e+02 5.34e-05 3.05e-05 -1.95e-03 -2.29e-05 ...
  .. ..$ conv     :List of 2
  .. .. ..$ opt : num 0
  .. .. ..$ lme4: list()
  .. ..$ feval    : num 321
  .. ..$ warnings : list()
  .. ..$ val      : num [1:7] 0 0.365 -0.884 0.577 -0.143 ...
> 

1 个答案:

答案 0 :(得分:2)

如果你想预测仅使用固定效果(即不包括随机效果),那么你需要包括&#34; re.form = NA&#34;在预测的代码行中:

PREDICTPC1&lt; -predict(MOD.MIX.1,newdata,re.form = NA)

默认值包括预测中的随机效果,在这种情况下,您需要一个列,指定&#34; newdata&#34;中的随机效果。数据框架,正如罗宾逊先生上面指出的那样。

请参阅http://www.inside-r.org/packages/cran/lme4/docs/predict.merMod

上的文档