我正在使用lme,lmer和glmer的模型。我需要使用summary()对象构造表并导出到Latex以显示我的结果。 xtable,mtable和apsrtable不起作用。我在前面的帖子(下面的链接)中看到了lme4对象的解决方案,但不是这些。
http://leftcensored.skepsi.net/2011/03/13/code-latex-tables-for-lme4-models/
这是我适合的模型的两个例子:
lme(y ~ time, data, na.action=na.omit, method="REML", random = ~ 1 | subject, control=lmeControl(msMaxIter = 200, msVerbose = TRUE))
glmer(y ~ time + (time | subject), data, family=binomial(link = "logit"), REML=T, control=list(maxIter = 800, maxFN=1000, msVerbose = TRUE))
任何帮助?
感谢
答案 0 :(得分:7)
我刚刚发现coef
个对象存在summary.mer
方法,它提供了所有必要的数据(对于固定效果)。返回的对象(在强制转换为data.frame
之后)可以轻松地移交给所选的格式化包(例如xtable
或ascii
)。
请参阅以下示例(仅生成可用的data.frame
):
require(lme4)
gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),
family = binomial, data = cbpp)
(res.table <- as.data.frame(coef(summary(gm1))))
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.3985 0.2279 -6.137 0.0000000008416
## period2 -0.9923 0.3054 -3.249 0.0011562741408
## period3 -1.1287 0.3260 -3.462 0.0005368285553
## period4 -1.5804 0.4288 -3.686 0.0002282168737
答案 1 :(得分:6)
编辑:
在编辑时,lme4包已更新,memisc不再适用于这些对象。包装texreg是另一种选择。我已经离开了这个答案,以备memisc更新并重新开始工作。
memisc包执行lme4表:
以下是我写的一些代码的片段:
GPusenonMH=lmer(GPEtc_c~Age.y+Measure+Gender+Marital2+Work2+(1|NHS), family="poisson", data=subset(lemurdata, Measure %in% c(1,3)))
model1=mtable(GPusetotal, GPuseMH, GPusenonMH, summary.stats=FALSE)
toLatex(model1)
显然,如果你想要任何东西,你可以将summary.stats = TRUE。
请注意,dcolumn和booktabs Latex软件包都默认使用,因此要么将它们放在Latex前导码中,要么使用helpfile中的命令将它们关闭(useBooktabs = FALSE,useDcolumn = FALSE)。
答案 2 :(得分:3)
对于lme
,我的个人版本如下;你可以用其他类似的插件下载它,例如从lme / lm / glm表的p值中提取\Sexpr{}
字符串作为Dmisc来自
http://www.menne-biomed.de/download
这是非常个性化的,但如果我喜欢四舍五入到非常有意义的数字。对不起,包nlme可以满足我所需要的(并且超过lme / gaussian),所以还没有lme4版本。
"latex.summary.lme" <-
function(object, title="",parameter=NULL, file="",
shadep=0.05,caption=NULL,label=NULL,ctable=FALSE,form=NULL,
interceptp = FALSE, moredec=0, where="!htbp", ...) {
# This function can be mis-used for gls models when an explicit
# form is given
options(Hverbose=FALSE)
require('Hmisc')
require('nlme')
dd <- object$dims
method <- object$method
fixF <- object$call$fixed
xtTab <- as.data.frame(object$tTable)
sigp <- xtTab[,"p-value"]< shadep # cells that will be shaded
if (!interceptp){
sigp[1] <- FALSE # intercept will never be shaded
# Replace small significances, discarding p-value for (Intercept)
xtTab[1,"p-value"] = 1 # we do not show it anyway, easier formatting
}
pval <- format(zapsmall(xtTab[, "p-value"],4))
pval[as.double(pval) < 0.0001] <- "$< .0001$"
xtTab[, "p-value"] <- pval
xtTab[,"t-value"] <- round(xtTab[,"t-value"],1)
if (ncol(xtTab) == 5) # not for gls
xtTab[,"DF"] <- as.integer(xtTab[,"DF"])
# extract formula
if (is.null(form)) {
if (!is.null(object$terms)) {
form=object$terms
} else {
form = formula(object)
}
}
if (is.null(parameter)) {
parameter=as.character(form[[2]])
}
if (any(wchLv <- (as.double(levels(xtTab[, "p-value"])) == 0))) {
levels(xtTab[, "p-value"])[wchLv] <- "<.0001"
}
if (is.null(label))
label <- lmeLabel("contr",form)
form <- deparse(removeFormFunc(as.formula(form)),width.cutoff=500)
form <- paste(sub('~','$\\\\sim$ ',form),sep="")
# All I( in factors are replaced with (This could be improved)
row.names(xtTab) <-
gsub("I\\(","(",dimnames(object$tTable)[[1]])
row.names(xtTab) <- gsub("\\^2","\\texttwosuperior",row.names(xtTab))
# Determine base level
levs <- lapply(object$contrasts,function(object) {dimnames(object)[[1]][1]})
levnames <- paste(names(levs),levs,sep=" = ",collapse=", ")
# Try to locate numeric covariables
# v1 <- all.vars(formula(object))[-1]
## Changed 8.10.2008, not regression-tested
v1 <- all.vars(form)[-1]
numnames <- v1[is.na(match(v1,names(levs)))]
if (length(numnames > 0)) {
numnames <- paste(numnames," = 0",collapse=", ")
levnames <- paste(levnames,numnames,sep=", ")
}
if (is.null(caption)){ # TODO: Allow %s substitution
if (inherits(object,"lme"))
md = "Mixed model (lme)" else
if (inherits(object,"gls"))
md = "Extended linear model (gls)" else
md = "Linear model"
caption <- paste(md," contrast table for \\emph{",
parameter, "} (model ",form,
"). The value in row (Intercept) gives the reference value for ",
levnames,".",sep='')
}
caption.lot <- paste("Contrast table for ",parameter, " by ",
levnames)
ndec <- pmax(round(1-log10(xtTab[,2]+0.000001)+moredec),0)
xtTab[,1] <- formatC(round(xtTab[,1],ndec))
xtTab[,2] <- formatC(round(xtTab[,2],ndec))
if (ncol(xtTab) == 5) {
names(xtTab) <- c("Value","StdErr","DF","t","p")
pcol = 5
} else {# gls misuse
names(xtTab) <- c("Value","StdErr","t","p")
pcol = 4
}
# Only show intercept p/t when explicitely required
if (!interceptp){
xtTab[1,pcol-1] <- NA
xtTab[1,pcol] <- ''
}
cellTex <- matrix(rep("", NROW(xtTab) * NCOL(xtTab)), nrow=NROW(xtTab))
cellTex[sigp,pcol] <- "cellcolor[gray]{0.9}"
rowlabel <- ifelse(nchar(parameter) >9,"",parameter)
latex(xtTab, title=title, file=file, caption=caption,caption.lot=caption.lot,
caption.loc="bottom", label=label, cellTexCmds = cellTex,
rowlabel=rowlabel, ctable=ctable, where=where,
booktabs = !ctable, numeric.dollar=FALSE,col.just=rep("r",5),...)
}
"latex.lme" <-
function(object, title="",parameter=NULL,file="",shadep=0.05,
caption=NULL,label=NULL,ctable=FALSE,form=NULL,
interceptp=FALSE, moredec= 0, where="!htbp",...) {
options(Hverbose=FALSE)
require('Hmisc')
require('nlme')
latex.summary.lme(summary(object),title=title,parameter=parameter,
file=file, shadep=shadep, caption=caption,
label=label, ctable=ctable, form=form, moredec=moredec, where=where,...)
}
答案 3 :(得分:0)
以下是我的解决方案:假设fit
是您的lme模型的结果,例如fit <- lme(...)
。如果您希望summary(fit)
显示所有变量,只需键入
> fit_text <- unclass(fit)
> attributes(fit_text)
你会看到类似结构的结果。然后,您可以将摘要报告的某些组件保存到txt文件或Rdata文件中。